[ad_1]
Fries I, Camazine S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 2001;32:199–214. https://doi.org/10.1051/apido:2001122.
Lipsitch M, Nowak MA, Ebert D, Might RM. The inhabitants dynamics of vertically and horizontally transmitted parasites. Proc R Soc B Biol Sci. 1995;260:321–7. https://doi.org/10.1098/rspb.1995.0099.
Lipsitch M, Siller S, Nowak MA. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution. 1996;50:1729. https://doi.org/10.2307/2410731.
Le Clec’h W, Dittmer J, Raimond M, Bouchon D, Sicard M. Phenotypic shift in Wolbachia virulence in direction of its native host throughout serial horizontal passages. Proc R Soc B Biol Sci. 2017. https://doi.org/10.1098/rspb.2017.1076.
Ewald PW. Host-parasite relations, vectors, and the evolution of illness severity. Annu Rev Ecol Syst. 1983;14:465–85.
Ewald PW. The evolution of infectious ailments. Oxford: Oxford College; 1994.
Herre EA. Inhabitants construction and the evolution of virulence in nematode parasites of fig wasps. Science. 1993;259:1442–5. https://doi.org/10.1126/science.259.5100.1442.
Cressler CE, Mcleod DV, Rozins C, Van Den Hoogen J, Day T. The adaptive evolution of virulence: a evaluation of theoretical predictions and empirical exams. Parasitology. 2016;147:915–30. https://doi.org/10.1017/S003118201500092X.
Evans JD, Spivak M. Socialized drugs: Particular person and communal illness boundaries in honey bees. J Invertebr Pathol. 2010;103:S62–72. https://doi.org/10.1016/j.jip.2009.06.019.
Sparagano OAE, Allsopp MTEP, Mank RA, Rijpkema SGT, Figueroa JV, Jongejan F. Molecular detection of pathogen DNA in ticks (acari: Ixodidae): a evaluation. Exp Appl Acarol. 1999;23:929–60. https://doi.org/10.1023/A:1006313803979.
Suzuki S, Oshima Ok, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, et al. Interplay between the membrane protein of a pathogen and bug microfilament advanced determines insect-vector specificity. Proc Natl Acad Sci USA. 2006;103:4252–7. https://doi.org/10.1073/pnas.0508668103.
Vobis M, D’Haese J, Mehlhorn H, Mencke N. Proof of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis). Parasitol Res. 2003;91:467–70. https://doi.org/10.1007/s00436-003-0949-8.
Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH. A low-cost microfluidic chip for fast genotyping of malaria-transmitting mosquitoes. PLoS ONE. 2012;7:1–7. https://doi.org/10.1371/journal.pone.0042222.
Lane RP, Crosskey RW. Medical bugs and arachnids. Dordrecht: Springer Chapman Corridor; 1993.
Rosenkranz P, Aumeier P, Ziegelmann B. Biology and management of Varroa destructor. J Invertebr Pathol. 2010;103:S96–119. https://doi.org/10.1016/j.jip.2009.07.016.
Chen G, Wu Y, Deng J, Wen Z, Wang S, Chen Y, et al. Seasonal variation of viral infections between the japanese honey bee (Apis cerana) and the western honey bee (Apis mellifera). Microbiologyopen. 2021;10:e1162. https://doi.org/10.1002/mbo3.1162.
de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chejanovsky N, et al. Normal strategies for virus analysis in Apis mellifera. J Apic Res. 2013;52:1–56. https://doi.org/10.3896/IBRA.1.52.4.22.
Levin S, Sela N, Erez T, Nestel D, Pettis J, Neumann P, et al. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses. 2019;11:94. https://doi.org/10.3390/v11020094.
Posada-Florez F, Ryabov EV, Heerman MC, Chen Y, Evans JD, Sonenshine DE, et al. Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from a synthetic food plan. PLoS ONE. 2020;15:1–13. https://doi.org/10.1371/journal.pone.0242688.
Beaurepaire A, Piot N, Doublet V, Antunez Ok, Campbell E, Chantawannakul P, et al. Variety and international distribution of viruses of the western honey bee, Apis mellifera. Bugs. 2020;11:1–25. https://doi.org/10.3390/insects11040239.
McMenamin AJ, Genersch E. Honey bee colony losses and related viruses. Curr Opin Insect Sci. 2015;8:121–9. https://doi.org/10.1016/j.cois.2015.01.015.
Tehel A, Brown MJF, Paxton RJ. Impression of managed honey bee viruses on wild bees. Curr Opin Virol. 2016;19:16–22. https://doi.org/10.1016/j.coviro.2016.06.006.
Chen Y-P, Siede R. Honey bee viruses. Adv Virus Res. 2007;70:33–80. https://doi.org/10.1006/rwvi.1999.0139.
de Miranda JR, Cordoni G, Budge G. The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus advanced. J Invertebr Pathol. 2010;103:S30–47. https://doi.org/10.1016/j.jip.2009.06.014.
Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MAY, et al. Varroa destructor: a posh parasite, crippling honey bees worldwide. Traits Parasitol. 2020;36:592–606. https://doi.org/10.1016/j.pt.2020.04.004.
Benaets Ok, Van Geystelen A, Cardoen D, De Smet L, De Graaf DC, Schoofs L, et al. Covert deformed wing virus infections have long-term deleterious results on honeybee foraging and survival. Proc R Soc B Biol Sci. 2017;284:20162149. https://doi.org/10.1098/rspb.2016.2149.
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, et al. Bee viruses: routes of An infection in hymenoptera. Entrance Microbiol. 2020;11:1–22. https://doi.org/10.3389/fmicb.2020.00943.
Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. World honey bee viral panorama altered by a parasitic mite. Science. 2012;336:1304–6. https://doi.org/10.1126/science.1220941.
Ryabov EV, Wooden GR, Fannon JM, Moore JD, Bull JC, Chandler D, et al. A virulent pressure of Deformed Wing Virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004230.
Wilfert L, Lengthy G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, et al. Honeybee illness: deformed wing virus is a latest international epidemic in honeybees pushed by varroa mites. Science. 2016;351:594–7. https://doi.org/10.1126/science.aac9976.
Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, et al. Varroa destructor feeds totally on honey bee fats physique tissue and never hemolymph. Proc Natl Acad Sci USA. 2019;116:1792–801. https://doi.org/10.1073/pnas.1818371116.
Ryabov EV, Childers AK, Lopez D, Grubbs Ok, Posada-Florez F, Weaver D, et al. Dynamic evolution in the important thing honey bee pathogen deformed wing virus: novel insights into virulence and competitors utilizing reverse genetics. PLoS Biol. 2019;17:e3000502. https://doi.org/10.1371/journal.pbio.3000502.
Mordecai GJ, Wilfert L, Martin SJ, Jones IM, Schroeder DC. Variety in a honey bee pathogen: first report of a 3rd grasp variant of the deformed wing virus quasispecies. ISME J. 2016;10:1264–73. https://doi.org/10.1038/ismej.2015.178.
Brettell L, Mordecai G, Schroeder D, Jones I, da Silva J, Vicente-Rubiano M, et al. A comparability of deformed wing virus in deformed and asymptomatic honey bees. Bugs. 2017;8:28. https://doi.org/10.3390/insects8010028.
de Miranda JR, Brettell LE, Chejanovsky N, Childers AK, Dalmon A, Deboutte W, et al. Chilly case: The disappearance of Egypt bee virus, a fourth distinct grasp pressure of deformed wing virus linked to honeybee mortality in 1970’s Egypt. Virol J. 2022;19:1–11. https://doi.org/10.1186/s12985-022-01740-2.
Gisder S, Möckel N, Eisenhardt D, Genersch E. In vivo evolution of viral virulence: switching of deformed wing virus between hosts leads to virulence modifications and sequence shifts. Environ Microbiol. 2018;20:4612–28. https://doi.org/10.1111/1462-2920.14481.
Dalmon A, Desbiez C, Coulon M, Thomasson M, Le Conte Y, Alaux C, et al. Proof for optimistic choice and recombination hotspots in deformed wing virus (DWV). Sci Rep. 2017;7:1–12. https://doi.org/10.1038/srep41045.
Kevill JL, Stainton KC, Schroeder DC, Martin SJ. Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch Virol. 2021;166:2693–702. https://doi.org/10.1007/s00705-021-05162-3.
Kulhanek Ok, Garavito A, vanEngelsdorp D. Accelerated Varroa destructor inhabitants progress in honey bee (Apis mellifera) colonies is related to visitation from n on-natal bees. Sci Rep. 2021;11:1–15. https://doi.org/10.1038/s41598-021-86558-8.
Mordecai GJ, Brettell LE, Martin SJ, Dixon D, Jones IM, Schroeder DC. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME J. 2016;10:1182–91. https://doi.org/10.1038/ismej.2015.186.
Ryabov EV, Childers AK, Chen Y, Madella S, Nessa A, VanEngelsdorp D, et al. Latest unfold of Varroa destructor virus-1, a honey bee pathogen, in the USA. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/s41598-017-17802-3.
McMahon DP, Natsopoulou ME, Doublet V, Fürst M, Weging S, Brown MJF, et al. Elevated virulence of an rising viral genotype as a driver of honeybee loss. Proc Biol Sci. 2016;283:20160811. https://doi.org/10.1098/rspb.2016.0811.
Martin SJ, Brettell LE. Deformed wing virus in honeybees and different bugs. Annu Rev Virol. 2019;6:49–69. https://doi.org/10.1146/annurev-virology-092818-015700.
Norton AM, Remnant EJ, Buchmann G, Beekman M. Accumulation and competitors amongst deformed wing virus genotypes in naïve Australian honeybees offers perception into the rising international prevalence of genotype B. Entrance Microbiol. 2020;11:620. https://doi.org/10.3389/fmicb.2020.00620.
Grindrod I, Kevill JL, Villalobos EM, Schroeder DC, Martin SJT. years of deformed Wing Virus (DWV) in Hawaiian honey bees (Apis mellifera), the dominant DWV-A variant is doubtlessly being changed by variants with a DWV-B coding sequence. Viruses. 2021;13:969. https://doi.org/10.3390/v13060969.
Ray AM, Davis SL, Rasgon JL, Grozinger CM. Simulated vector transmission differentially influences dynamics of two viral variants of deformed wing virus in honey bees (Apis mellifera). J Gen Virol. 2021;102:001687. https://doi.org/10.1099/jgv.0.001687.
Gisder S, Genersch E. Direct proof for an infection of Varroa destructor mites with the bee-pathogenic deformed wing virus variant B, however not variant A, by way of fluorescence in situ hybridization evaluation. J Virol. 2021;95:e01786-20. https://doi.org/10.1128/jvi.01786-20.
Gusachenko ON, Woodford L, Balbirnie-Cumming Ok, Campbell EM, Christie CR, et al. Inexperienced bees: reverse genetic evaluation of deformed wing virus transmission, replication, and tropism. Viruses. 2020;12:532. https://doi.org/10.3390/v12050532.
Posada-florez F, Childers AK, Heerman MC, Egekwu NI, Cook dinner SC, Chen Y, et al. Deformed wing virus sort A, a serious honey bee pathogen, is vectored by the mite Varroa destructor in a non—propagative method. Sci Rep. 2019;9:12445. https://doi.org/10.1038/s41598-019-47447-3.
Dubois E, Dardouri M, Schurr F, Cougoule N, Sircoulomb F, Thiéry R. Outcomes of honeybee pupae inoculated with deformed wing virus genotypes A and B. Apidologie. 2020;51:18–34. https://doi.org/10.1007/s13592-019-00701-z.
Kevill JL, de Souza FS, Sharples C, Oliver R, Schroeder DC, Martin SJ. DWV-A deadly to honey bees (Apis mellifera): a colony stage survey of DWV variants (A, B, and C) in England, Wales, and 32 states throughout the US. Viruses. 2019;11:426. https://doi.org/10.3390/v11050426.
Natsopoulou ME, McMahon DP, Doublet V, Frey E, Rosenkranz P, Paxton RJ. The virulent, rising genotype B of deformed wing virus is intently linked to overwinter honeybee employee loss. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/s41598-017-05596-3.
Tehel A, Vu Q, Bigot D, Gogol-döring A, Koch P, Jenkins C, et al. The 2 prevalent genotypes of an rising equally low pupal mortality and equally excessive wing deformities in host honey bees. Viruses. 2019;11:114. https://doi.org/10.3390/v11020114.
Yue C, Genersch E. RT-PCR evaluation of deformed wing virus in honey bees (Apis mellifera) and mites (Varroa destructor). J Gen Virol. 2005;86:3419-24. https://doi.org/10.1099/vir.0.81401-010.1099/vir.0.81401-0.
Möckel N, Gisder S, Genersch E. Horizontal transmission of deformed wing virus: pathological penalties in grownup bees (Apis mellifera) rely on the transmission route. J Gen Virol. 2011;92:370–7. https://doi.org/10.1099/vir.0.025940-0.
Mazzei M, Carrozza ML, Luisi E, Forzan M, Giusti M, Sagona S, et al. Infectivity of DWV related to flower pollen: experimental proof of a horizontal transmission route. PLoS ONE. 2014;9:1–16. https://doi.org/10.1371/journal.pone.0113448.
Chen Y, Evans J, Feldlaufer M. Horizontal and vertical transmission of viruses within the honey bee Apis mellifera. J Invertebr Pathol. 2006;92:152–9. https://doi.org/10.1016/j.jip.2006.03.010.
Nazzi F, Milani N, Applicata B, Udine U. method for replica of Varroa jacobsoni oud beneath laboratory circumstances. Apidologie. 1994;25:579–84.
Piou V, Tabart J, Urrutia V, Hemptinne JL, Vétillard A. Impression of the phoretic part on replica and injury brought on by Varroa destructor (Anderson and Trueman) to its host, the European honey bee (Apis mellifera L.). PLoS One. 2016;11:1–15. https://doi.org/10.1371/journal.pone.0153482.
Piou V, Vétillard A. Varroa destructor rearing in laboratory circumstances significance of foundress survival in doubly infested cells and replica of laboratory-born females. Apidologie. 2020;51:968–83. https://doi.org/10.1007/s13592-020-00775-0.
Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) within the head of the honey bee. Virology. 2011;417:106–12. https://doi.org/10.1016/j.virol.2011.05.009.
Schurr F, Tison A, Militano L, Cheviron N, Sircoulomb F, Rivière M, et al. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses. J Virol Strategies. 2019;270:70–8. https://doi.org/10.1016/j.jviromet.2019.04.020.
Wickham H. ggplot2 elegant graphics for information evaluation. Berlin: Springer; 2016.
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol. 2021;90:2254-67. https://doi.org/10.1111/1365-2656.13493.
Yañez O, Chávez-galarza J, Tellgren-roth C, Pinto MA, Neumann P, de Miranda JR. The honeybee (Apis mellifera) developmental state shapes the genetic composition of the deformed wing virus-A quasispecies throughout serial transmission. Sci Rep. 2020;10:1–12. https://doi.org/10.1038/s41598-020-62673-w.
Piou V, Tabart J, Hemptinne JL, Vétillard A. Impact of pollen extract supplementation on the varroatosis tolerance of honey bee (Apis mellifera) larvae reared in vitro. Exp Appl Acarol. 2018;74:25–41. https://doi.org/10.1007/s10493-017-0198-7.
Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld Ok, Hilker M, et al. Proof for damage-dependent hygienic behaviour in direction of Varroa destructor-parasitised brood within the western honey bee Apis mellifera. J Exp Biol. 2012;215:264–71. https://doi.org/10.1242/jeb.062562.
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the laboratory to the sector: management, biocontrol and IPM views—a evaluation. Bugs. 2021;12:800. https://doi.org/10.3390/insects12090800.
Wu Y, Dong X, Kadowaki T. Characterization of the copy quantity and variants of deformed wing virus (DWV) within the pairs of honey bee pupa and infesting Varroa destructor or Tropilaelaps mercedesae. Entrance Microbiol. 2017;8:1–10. https://doi.org/10.3389/fmicb.2017.01558.
Brutscher LM, Flenniken ML. RNAi and antiviral protection within the honey bee. J Immunol Res. 2015;2015:1–10. https://doi.org/10.1155/2015/941897.
Flenniken ML, Andino R. Non-specific dsRNA-mediated antiviral response within the honey bee. PLoS ONE. 2013;8:1–16. https://doi.org/10.1371/journal.pone.0077263.
Marques JT, Imler JL. The variety of insect antiviral immunity: insights from viruses. Curr Opin Microbiol. 2016;32:71–6. https://doi.org/10.1016/j.mib.2016.05.002.
Di Prisco G, Annoscia D, Margiotta M, Ferrara R, Varricchio P, Zanni V, et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and well being. Proc Natl Acad Sci USA. 2016;113:3203–8. https://doi.org/10.1073/pnas.1523515113.
Shen M, Yang X, Cox-Foster D, Cui L. The position of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology. 2005;342:141–9. https://doi.org/10.1016/j.virol.2005.07.012.
Kanbar G, Engels W. Ultrastructure and bacterial an infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res. 2003;90:349–54. https://doi.org/10.1007/s00436-003-0827-4.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a brand new genome meeting algorithm and its purposes to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.
Bakonyi T, Farkas R, Szendroi A, Dobos-Kovàcs M, Rusvai M. Detection of acute bee paralysis virus by RT-PCR in honey bee and Varroa destructor discipline samples: fast screening of consultant hungarian apiaries. Apidologie. 2002;33:63–74. https://doi.org/10.1051/apido.
Benjeddou M, Leat N, Allsopp M, Davison S. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase PCR. Appl Environ Microbiol. 2001;67:2384–7. https://doi.org/10.1128/AEM.67.5.2384-2387.2001.
Blanchard P, Ribière M, Celle O, Lallemand P, Schurr F, Olivier V, et al. Analysis of a real-time two-step RT-PCR assay for quantitation of persistent bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life levels of a symptomatic colony. J Virol Strategies. 2007;141:7–13. https://doi.org/10.1016/j.jviromet.2006.11.021.
Grabensteiner E, Ritter W, Carter MJ, Davison S, Pechhacker H, Kolodziejek J, et al. Sacbrood virus of the honeybee (Apis mellifera): fast identification and phylogenetic evaluation utilizing reverse transcription-PCR. Clin Diagn Lab Immunol. 2001;8:93–104. https://doi.org/10.1128/CDLI.8.1.93-104.2001.
[ad_2]
Comments are closed.