Transmission of deformed wing virus between Varroa destructor foundresses, mite offspring and infested honey bees – Parasites & Vectors – Parasites & Vectors

[ad_1]

  • Fries I, Camazine S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 2001;32:199–214. https://doi.org/10.1051/apido:2001122.

    Article 

    Google Scholar
     

  • Lipsitch M, Nowak MA, Ebert D, Might RM. The inhabitants dynamics of vertically and horizontally transmitted parasites. Proc R Soc B Biol Sci. 1995;260:321–7. https://doi.org/10.1098/rspb.1995.0099.

    CAS 
    Article 

    Google Scholar
     

  • Lipsitch M, Siller S, Nowak MA. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution. 1996;50:1729. https://doi.org/10.2307/2410731.

    Article 
    PubMed 

    Google Scholar
     

  • Le Clec’h W, Dittmer J, Raimond M, Bouchon D, Sicard M. Phenotypic shift in Wolbachia virulence in direction of its native host throughout serial horizontal passages. Proc R Soc B Biol Sci. 2017. https://doi.org/10.1098/rspb.2017.1076.

    Article 

    Google Scholar
     

  • Ewald PW. Host-parasite relations, vectors, and the evolution of illness severity. Annu Rev Ecol Syst. 1983;14:465–85.

    Article 

    Google Scholar
     

  • Ewald PW. The evolution of infectious ailments. Oxford: Oxford College; 1994.


    Google Scholar
     

  • Herre EA. Inhabitants construction and the evolution of virulence in nematode parasites of fig wasps. Science. 1993;259:1442–5. https://doi.org/10.1126/science.259.5100.1442.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cressler CE, Mcleod DV, Rozins C, Van Den Hoogen J, Day T. The adaptive evolution of virulence: a evaluation of theoretical predictions and empirical exams. Parasitology. 2016;147:915–30. https://doi.org/10.1017/S003118201500092X.

    Article 

    Google Scholar
     

  • Evans JD, Spivak M. Socialized drugs: Particular person and communal illness boundaries in honey bees. J Invertebr Pathol. 2010;103:S62–72. https://doi.org/10.1016/j.jip.2009.06.019.

    Article 
    PubMed 

    Google Scholar
     

  • Sparagano OAE, Allsopp MTEP, Mank RA, Rijpkema SGT, Figueroa JV, Jongejan F. Molecular detection of pathogen DNA in ticks (acari: Ixodidae): a evaluation. Exp Appl Acarol. 1999;23:929–60. https://doi.org/10.1023/A:1006313803979.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Suzuki S, Oshima Ok, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, et al. Interplay between the membrane protein of a pathogen and bug microfilament advanced determines insect-vector specificity. Proc Natl Acad Sci USA. 2006;103:4252–7. https://doi.org/10.1073/pnas.0508668103.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vobis M, D’Haese J, Mehlhorn H, Mencke N. Proof of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis). Parasitol Res. 2003;91:467–70. https://doi.org/10.1007/s00436-003-0949-8.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH. A low-cost microfluidic chip for fast genotyping of malaria-transmitting mosquitoes. PLoS ONE. 2012;7:1–7. https://doi.org/10.1371/journal.pone.0042222.

    CAS 
    Article 

    Google Scholar
     

  • Lane RP, Crosskey RW. Medical bugs and arachnids. Dordrecht: Springer Chapman Corridor; 1993.

    Book 

    Google Scholar
     

  • Rosenkranz P, Aumeier P, Ziegelmann B. Biology and management of Varroa destructor. J Invertebr Pathol. 2010;103:S96–119. https://doi.org/10.1016/j.jip.2009.07.016.

    Article 
    PubMed 

    Google Scholar
     

  • Chen G, Wu Y, Deng J, Wen Z, Wang S, Chen Y, et al. Seasonal variation of viral infections between the japanese honey bee (Apis cerana) and the western honey bee (Apis mellifera). Microbiologyopen. 2021;10:e1162. https://doi.org/10.1002/mbo3.1162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chejanovsky N, et al. Normal strategies for virus analysis in Apis mellifera. J Apic Res. 2013;52:1–56. https://doi.org/10.3896/IBRA.1.52.4.22.

    CAS 
    Article 

    Google Scholar
     

  • Levin S, Sela N, Erez T, Nestel D, Pettis J, Neumann P, et al. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses. 2019;11:94. https://doi.org/10.3390/v11020094.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Posada-Florez F, Ryabov EV, Heerman MC, Chen Y, Evans JD, Sonenshine DE, et al. Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from a synthetic food plan. PLoS ONE. 2020;15:1–13. https://doi.org/10.1371/journal.pone.0242688.

    CAS 
    Article 

    Google Scholar
     

  • Beaurepaire A, Piot N, Doublet V, Antunez Ok, Campbell E, Chantawannakul P, et al. Variety and international distribution of viruses of the western honey bee, Apis mellifera. Bugs. 2020;11:1–25. https://doi.org/10.3390/insects11040239.

    Article 

    Google Scholar
     

  • McMenamin AJ, Genersch E. Honey bee colony losses and related viruses. Curr Opin Insect Sci. 2015;8:121–9. https://doi.org/10.1016/j.cois.2015.01.015.

    Article 
    PubMed 

    Google Scholar
     

  • Tehel A, Brown MJF, Paxton RJ. Impression of managed honey bee viruses on wild bees. Curr Opin Virol. 2016;19:16–22. https://doi.org/10.1016/j.coviro.2016.06.006.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y-P, Siede R. Honey bee viruses. Adv Virus Res. 2007;70:33–80. https://doi.org/10.1006/rwvi.1999.0139.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • de Miranda JR, Cordoni G, Budge G. The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus advanced. J Invertebr Pathol. 2010;103:S30–47. https://doi.org/10.1016/j.jip.2009.06.014.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MAY, et al. Varroa destructor: a posh parasite, crippling honey bees worldwide. Traits Parasitol. 2020;36:592–606. https://doi.org/10.1016/j.pt.2020.04.004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Benaets Ok, Van Geystelen A, Cardoen D, De Smet L, De Graaf DC, Schoofs L, et al. Covert deformed wing virus infections have long-term deleterious results on honeybee foraging and survival. Proc R Soc B Biol Sci. 2017;284:20162149. https://doi.org/10.1098/rspb.2016.2149.

  • Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, et al. Bee viruses: routes of An infection in hymenoptera. Entrance Microbiol. 2020;11:1–22. https://doi.org/10.3389/fmicb.2020.00943.

    Article 

    Google Scholar
     

  • Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. World honey bee viral panorama altered by a parasitic mite. Science. 2012;336:1304–6. https://doi.org/10.1126/science.1220941.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ryabov EV, Wooden GR, Fannon JM, Moore JD, Bull JC, Chandler D, et al. A virulent pressure of Deformed Wing Virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004230.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilfert L, Lengthy G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, et al. Honeybee illness: deformed wing virus is a latest international epidemic in honeybees pushed by varroa mites. Science. 2016;351:594–7. https://doi.org/10.1126/science.aac9976.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, et al. Varroa destructor feeds totally on honey bee fats physique tissue and never hemolymph. Proc Natl Acad Sci USA. 2019;116:1792–801. https://doi.org/10.1073/pnas.1818371116.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryabov EV, Childers AK, Lopez D, Grubbs Ok, Posada-Florez F, Weaver D, et al. Dynamic evolution in the important thing honey bee pathogen deformed wing virus: novel insights into virulence and competitors utilizing reverse genetics. PLoS Biol. 2019;17:e3000502. https://doi.org/10.1371/journal.pbio.3000502.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mordecai GJ, Wilfert L, Martin SJ, Jones IM, Schroeder DC. Variety in a honey bee pathogen: first report of a 3rd grasp variant of the deformed wing virus quasispecies. ISME J. 2016;10:1264–73. https://doi.org/10.1038/ismej.2015.178.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Brettell L, Mordecai G, Schroeder D, Jones I, da Silva J, Vicente-Rubiano M, et al. A comparability of deformed wing virus in deformed and asymptomatic honey bees. Bugs. 2017;8:28. https://doi.org/10.3390/insects8010028.

    Article 
    PubMed Central 

    Google Scholar
     

  • de Miranda JR, Brettell LE, Chejanovsky N, Childers AK, Dalmon A, Deboutte W, et al. Chilly case: The disappearance of Egypt bee virus, a fourth distinct grasp pressure of deformed wing virus linked to honeybee mortality in 1970’s Egypt. Virol J. 2022;19:1–11. https://doi.org/10.1186/s12985-022-01740-2.

    CAS 
    Article 

    Google Scholar
     

  • Gisder S, Möckel N, Eisenhardt D, Genersch E. In vivo evolution of viral virulence: switching of deformed wing virus between hosts leads to virulence modifications and sequence shifts. Environ Microbiol. 2018;20:4612–28. https://doi.org/10.1111/1462-2920.14481.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dalmon A, Desbiez C, Coulon M, Thomasson M, Le Conte Y, Alaux C, et al. Proof for optimistic choice and recombination hotspots in deformed wing virus (DWV). Sci Rep. 2017;7:1–12. https://doi.org/10.1038/srep41045.

    CAS 
    Article 

    Google Scholar
     

  • Kevill JL, Stainton KC, Schroeder DC, Martin SJ. Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch Virol. 2021;166:2693–702. https://doi.org/10.1007/s00705-021-05162-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulhanek Ok, Garavito A, vanEngelsdorp D. Accelerated Varroa destructor inhabitants progress in honey bee (Apis mellifera) colonies is related to visitation from n on-natal bees. Sci Rep. 2021;11:1–15. https://doi.org/10.1038/s41598-021-86558-8.

    CAS 
    Article 

    Google Scholar
     

  • Mordecai GJ, Brettell LE, Martin SJ, Dixon D, Jones IM, Schroeder DC. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME J. 2016;10:1182–91. https://doi.org/10.1038/ismej.2015.186.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ryabov EV, Childers AK, Chen Y, Madella S, Nessa A, VanEngelsdorp D, et al. Latest unfold of Varroa destructor virus-1, a honey bee pathogen, in the USA. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/s41598-017-17802-3.

    CAS 
    Article 

    Google Scholar
     

  • McMahon DP, Natsopoulou ME, Doublet V, Fürst M, Weging S, Brown MJF, et al. Elevated virulence of an rising viral genotype as a driver of honeybee loss. Proc Biol Sci. 2016;283:20160811. https://doi.org/10.1098/rspb.2016.0811.

  • Martin SJ, Brettell LE. Deformed wing virus in honeybees and different bugs. Annu Rev Virol. 2019;6:49–69. https://doi.org/10.1146/annurev-virology-092818-015700.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Norton AM, Remnant EJ, Buchmann G, Beekman M. Accumulation and competitors amongst deformed wing virus genotypes in naïve Australian honeybees offers perception into the rising international prevalence of genotype B. Entrance Microbiol. 2020;11:620. https://doi.org/10.3389/fmicb.2020.00620.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grindrod I, Kevill JL, Villalobos EM, Schroeder DC, Martin SJT. years of deformed Wing Virus (DWV) in Hawaiian honey bees (Apis mellifera), the dominant DWV-A variant is doubtlessly being changed by variants with a DWV-B coding sequence. Viruses. 2021;13:969. https://doi.org/10.3390/v13060969.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray AM, Davis SL, Rasgon JL, Grozinger CM. Simulated vector transmission differentially influences dynamics of two viral variants of deformed wing virus in honey bees (Apis mellifera). J Gen Virol. 2021;102:001687. https://doi.org/10.1099/jgv.0.001687.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Gisder S, Genersch E. Direct proof for an infection of Varroa destructor mites with the bee-pathogenic deformed wing virus variant B, however not variant A, by way of fluorescence in situ hybridization evaluation. J Virol. 2021;95:e01786-20. https://doi.org/10.1128/jvi.01786-20.

  • Gusachenko ON, Woodford L, Balbirnie-Cumming Ok, Campbell EM, Christie CR, et al. Inexperienced bees: reverse genetic evaluation of deformed wing virus transmission, replication, and tropism. Viruses. 2020;12:532. https://doi.org/10.3390/v12050532.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Posada-florez F, Childers AK, Heerman MC, Egekwu NI, Cook dinner SC, Chen Y, et al. Deformed wing virus sort A, a serious honey bee pathogen, is vectored by the mite Varroa destructor in a non—propagative method. Sci Rep. 2019;9:12445. https://doi.org/10.1038/s41598-019-47447-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois E, Dardouri M, Schurr F, Cougoule N, Sircoulomb F, Thiéry R. Outcomes of honeybee pupae inoculated with deformed wing virus genotypes A and B. Apidologie. 2020;51:18–34. https://doi.org/10.1007/s13592-019-00701-z.

    CAS 
    Article 

    Google Scholar
     

  • Kevill JL, de Souza FS, Sharples C, Oliver R, Schroeder DC, Martin SJ. DWV-A deadly to honey bees (Apis mellifera): a colony stage survey of DWV variants (A, B, and C) in England, Wales, and 32 states throughout the US. Viruses. 2019;11:426. https://doi.org/10.3390/v11050426.

    Article 
    PubMed Central 

    Google Scholar
     

  • Natsopoulou ME, McMahon DP, Doublet V, Frey E, Rosenkranz P, Paxton RJ. The virulent, rising genotype B of deformed wing virus is intently linked to overwinter honeybee employee loss. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/s41598-017-05596-3.

    CAS 
    Article 

    Google Scholar
     

  • Tehel A, Vu Q, Bigot D, Gogol-döring A, Koch P, Jenkins C, et al. The 2 prevalent genotypes of an rising equally low pupal mortality and equally excessive wing deformities in host honey bees. Viruses. 2019;11:114. https://doi.org/10.3390/v11020114.

  • Yue C, Genersch E. RT-PCR evaluation of deformed wing virus in honey bees (Apis mellifera) and mites (Varroa destructor). J Gen Virol. 2005;86:3419-24. https://doi.org/10.1099/vir.0.81401-010.1099/vir.0.81401-0.

  • Möckel N, Gisder S, Genersch E. Horizontal transmission of deformed wing virus: pathological penalties in grownup bees (Apis mellifera) rely on the transmission route. J Gen Virol. 2011;92:370–7. https://doi.org/10.1099/vir.0.025940-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mazzei M, Carrozza ML, Luisi E, Forzan M, Giusti M, Sagona S, et al. Infectivity of DWV related to flower pollen: experimental proof of a horizontal transmission route. PLoS ONE. 2014;9:1–16. https://doi.org/10.1371/journal.pone.0113448.

    CAS 
    Article 

    Google Scholar
     

  • Chen Y, Evans J, Feldlaufer M. Horizontal and vertical transmission of viruses within the honey bee Apis mellifera. J Invertebr Pathol. 2006;92:152–9. https://doi.org/10.1016/j.jip.2006.03.010.

    Article 
    PubMed 

    Google Scholar
     

  • Nazzi F, Milani N, Applicata B, Udine U. method for replica of Varroa jacobsoni oud beneath laboratory circumstances. Apidologie. 1994;25:579–84.

    Article 

    Google Scholar
     

  • Piou V, Tabart J, Urrutia V, Hemptinne JL, Vétillard A. Impression of the phoretic part on replica and injury brought on by Varroa destructor (Anderson and Trueman) to its host, the European honey bee (Apis mellifera L.). PLoS One. 2016;11:1–15. https://doi.org/10.1371/journal.pone.0153482.

    Article 

    Google Scholar
     

  • Piou V, Vétillard A. Varroa destructor rearing in laboratory circumstances significance of foundress survival in doubly infested cells and replica of laboratory-born females. Apidologie. 2020;51:968–83. https://doi.org/10.1007/s13592-020-00775-0.

  • Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) within the head of the honey bee. Virology. 2011;417:106–12. https://doi.org/10.1016/j.virol.2011.05.009.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schurr F, Tison A, Militano L, Cheviron N, Sircoulomb F, Rivière M, et al. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses. J Virol Strategies. 2019;270:70–8. https://doi.org/10.1016/j.jviromet.2019.04.020.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wickham H. ggplot2 elegant graphics for information evaluation. Berlin: Springer; 2016.


    Google Scholar
     

  • Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol. 2021;90:2254-67. https://doi.org/10.1111/1365-2656.13493.

  • Yañez O, Chávez-galarza J, Tellgren-roth C, Pinto MA, Neumann P, de Miranda JR. The honeybee (Apis mellifera) developmental state shapes the genetic composition of the deformed wing virus-A quasispecies throughout serial transmission. Sci Rep. 2020;10:1–12. https://doi.org/10.1038/s41598-020-62673-w.

    CAS 
    Article 

    Google Scholar
     

  • Piou V, Tabart J, Hemptinne JL, Vétillard A. Impact of pollen extract supplementation on the varroatosis tolerance of honey bee (Apis mellifera) larvae reared in vitro. Exp Appl Acarol. 2018;74:25–41. https://doi.org/10.1007/s10493-017-0198-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld Ok, Hilker M, et al. Proof for damage-dependent hygienic behaviour in direction of Varroa destructor-parasitised brood within the western honey bee Apis mellifera. J Exp Biol. 2012;215:264–71. https://doi.org/10.1242/jeb.062562.

    Article 
    PubMed 

    Google Scholar
     

  • Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the laboratory to the sector: management, biocontrol and IPM views—a evaluation. Bugs. 2021;12:800. https://doi.org/10.3390/insects12090800.

  • Wu Y, Dong X, Kadowaki T. Characterization of the copy quantity and variants of deformed wing virus (DWV) within the pairs of honey bee pupa and infesting Varroa destructor or Tropilaelaps mercedesae. Entrance Microbiol. 2017;8:1–10. https://doi.org/10.3389/fmicb.2017.01558.

    Article 

    Google Scholar
     

  • Brutscher LM, Flenniken ML. RNAi and antiviral protection within the honey bee. J Immunol Res. 2015;2015:1–10. https://doi.org/10.1155/2015/941897.

    CAS 
    Article 

    Google Scholar
     

  • Flenniken ML, Andino R. Non-specific dsRNA-mediated antiviral response within the honey bee. PLoS ONE. 2013;8:1–16. https://doi.org/10.1371/journal.pone.0077263.

    CAS 
    Article 

    Google Scholar
     

  • Marques JT, Imler JL. The variety of insect antiviral immunity: insights from viruses. Curr Opin Microbiol. 2016;32:71–6. https://doi.org/10.1016/j.mib.2016.05.002.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Prisco G, Annoscia D, Margiotta M, Ferrara R, Varricchio P, Zanni V, et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and well being. Proc Natl Acad Sci USA. 2016;113:3203–8. https://doi.org/10.1073/pnas.1523515113.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen M, Yang X, Cox-Foster D, Cui L. The position of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology. 2005;342:141–9. https://doi.org/10.1016/j.virol.2005.07.012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kanbar G, Engels W. Ultrastructure and bacterial an infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res. 2003;90:349–54. https://doi.org/10.1007/s00436-003-0827-4.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a brand new genome meeting algorithm and its purposes to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakonyi T, Farkas R, Szendroi A, Dobos-Kovàcs M, Rusvai M. Detection of acute bee paralysis virus by RT-PCR in honey bee and Varroa destructor discipline samples: fast screening of consultant hungarian apiaries. Apidologie. 2002;33:63–74. https://doi.org/10.1051/apido.

    CAS 
    Article 

    Google Scholar
     

  • Benjeddou M, Leat N, Allsopp M, Davison S. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase PCR. Appl Environ Microbiol. 2001;67:2384–7. https://doi.org/10.1128/AEM.67.5.2384-2387.2001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanchard P, Ribière M, Celle O, Lallemand P, Schurr F, Olivier V, et al. Analysis of a real-time two-step RT-PCR assay for quantitation of persistent bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life levels of a symptomatic colony. J Virol Strategies. 2007;141:7–13. https://doi.org/10.1016/j.jviromet.2006.11.021.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Grabensteiner E, Ritter W, Carter MJ, Davison S, Pechhacker H, Kolodziejek J, et al. Sacbrood virus of the honeybee (Apis mellifera): fast identification and phylogenetic evaluation utilizing reverse transcription-PCR. Clin Diagn Lab Immunol. 2001;8:93–104. https://doi.org/10.1128/CDLI.8.1.93-104.2001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Comments are closed.