[ad_1]
Buenzli PR, Sims NA. Quantifying the osteocyte community within the human skeleton. Bone 2015;75:144–50.
Bonewald LF. The wonderful osteocyte. J Bone Miner Res. 2011;26:229–38.
Schneider P, Meier M, Wepf R, Müller R. In direction of quantitative 3D imaging of the osteocyte lacuno-canalicular community. Bone 2010;47:848–58.
Bonewald L. Technology and performance of osteocyte dendritic processes. J Musculoskelet Neuronal Work together. 2005;5:321.
Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Püschel Ok, Djuric M, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7:7542–51.
You L, Cowin SC, Schaffler MB, Weinbaum S. A mannequin for pressure amplification within the actin cytoskeleton of osteocytes as a consequence of fluid drag on pericellular matrix. J Biomech. 2001;34:1375–86.
Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J. Osteocyte lacunae tissue pressure in cortical bone. J Biomech. 2006;39:1735–43.
Srinivasan S, Gross TS, Bain SD. Bone mechanotransduction could require augmentation with a view to strengthen the senescent skeleton. Ageing Res Rev. 2012;11:353–60.
Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, et al. Train for stopping and treating osteoporosis in postmenopausal girls. Cochrane Database Syst Rev. 2011;7:CD000333.
Korpelainen R, Keinänen-Kiukaanniemi S, Heikkinen J, Väänänen Ok, Korpelainen J. Impact of affect train on bone mineral density in aged girls with low BMD: a population-based randomized managed 30-month intervention. Osteoporos Int. 2006;17:109–18.
Busse B, Djonic D, Milovanovic P, Hahn M, Püschel Ok, Ritchie RO, et al. Lower within the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of reworking in aged human bone. Getting older Cell. 2010;9:1065–75.
Klein-Nulend J, Sterck J, Semeins C, Lips P, Joldersma M, Baart J, et al. Donor age and mechanosensitivity of human bone cells. Osteoporos Int. 2002;13:137–46.
Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, et al. Degeneration of the osteocyte community within the C57BL/6 mouse mannequin of ageing. Getting older 2017;9:2190.
Masgras I, Cannino G, Ciscato F, Sanchez-Martin C, Darvishi FB, Scantamburlo F, et al. Tumor development of neurofibromin-deficient cells is pushed by decreased respiration and hampered by NAD+ and SIRT3. Cell Demise Differ. 2022;29:1–13.
Kincaid B, Bossy-Wetzel E. Without end younger: SIRT3 a defend in opposition to mitochondrial meltdown, ageing, and neurodegeneration. Entrance Getting older Neurosci. 2013;5:48.
Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010;464:121–5.
Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling by way of altered mitochondrial oxidation and reactive oxygen species manufacturing. Proc Natl Acad Sci USA. 2011;108:14608–13.
Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation speed up the event of the metabolic syndrome. Mol Cell. 2011;44:177–90.
Gao J, Qin A, Liu D, Ruan R, Wang Q, Yuan J, et al. Endoplasmic reticulum mediates mitochondrial switch throughout the osteocyte dendritic community. Sci Adv. 2019;5:eaaw7215.
Gao J, Feng Z, Wang X, Zeng M, Liu J, Han S, et al. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Demise Differ. 2018;25:229–40.
Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL III, et al. Food regimen and train alerts regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Getting older 2009;1:771.
Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to train and metabolic and excitatory challenges. Cell Metab. 2016;23:128–42.
Alberini CM. Transcription elements in long-term reminiscence and synaptic plasticity. Physiological Rev. 2009;89:121–45.
Delghandi MP, Johannessen M, Moens U. The cAMP signalling pathway prompts CREB via PKA, p38 and MSK1 in NIH 3T3 cells. Cell Sign. 2005;17:1343–51.
Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age‐associated modifications in trabecular structure differ in feminine and male C57BL/6J mice. J Bone Miner Res. 2007;22:1197–207.
Okada S, Yoshida S, Ashrafi SH, Schraufnagel DE. The canalicular construction of compact bone within the rat at totally different ages. Microsc Microanalysis. 2002;8:104.
Zhang Ok, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, et al. E11/gp38 selective expression in osteocytes: regulation by mechanical pressure and position in dendrite elongation. Mol Cell Biol. 2006;26:4539–52.
Prideaux M, Loveridge N, Pitsillides AA, Farquharson C. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS ONE. 2012;7:e36786.
Staines KA, Javaheri B, Hohenstein P, Fleming R, Ikpegbu E, Unger E, et al. Hypomorphic conditional deletion of E11/Podoplanin reveals a task in osteocyte dendrite elongation. J Cell Physiol. 2017;232:3006–19.
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in mobile processes throughout ageing. Nat Rev Mol Cell Biol. 2021;22:119–41.
Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon mobile stress. Genes Dev. 2007;21:920–8.
Li Q, Cheng JCY, Jiang Q, Lee WYW. Function of sirtuins in bone biology: Potential implications for novel therapeutic methods for osteoporosis. Getting older Cell. 2021;20:e13301.
Dobson PF, Dennis EP, Hipps D, Reeve A, Laude A, Bradshaw C, et al. Mitochondrial dysfunction impairs osteogenesis, will increase osteoclast exercise, and accelerates age associated bone loss. Sci Rep. 2020;10:1–14.
Figueiredo PA, Powers SK, Ferreira RM, Amado F, Appell HJ, Duarte JA. Impression of lifelong sedentary habits on mitochondrial operate of mice skeletal muscle. J Gerontol Ser A Biomed Sci Med Sci. 2009;64:927–39.
Kim JM, Choi JS, Kim YH, Jin SH, Lim S, Jang HJ, et al. An activator of the cAMP/PKA/CREB pathway promotes osteogenesis from human mesenchymal stem cells. J Cell Physiol. 2013;228:617–26.
Lengthy F, Schipani E, Asahara H, Kronenberg H, Montminy M. The CREB household of activators is required for endochondral bone improvement. Improvement 2001;128:541–50.
Sato Ok, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki Ok, Morishita Y, et al. Regulation of osteoclast differentiation and performance by the CaMK-CREB pathway. Nat Med. 2006;12:1410–6.
Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gullicksen PS, et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci USA. 2006;103:14379–84.
Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent info regulator (Sir) 2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide–dependent deacetylase. J Cell Biol. 2002;158:647–57.
Kim H-S, Patel Ok, Muldoon-Jacobs Ok, Bisht KS, Aykin-Burns N, Pennington JD, et al. SIRT3 is a mitochondria-localized tumor suppressor required for upkeep of mitochondrial integrity and metabolism throughout stress. Most cancers Cell. 2010;17:41–52.
Matsui N, Takahashi Ok, Takeichi M, Kuroshita T, Noguchi Ok, Yamazaki Ok, et al. Magnolol and honokiol forestall studying and reminiscence impairment and cholinergic deficit in SAMP8 mice. Mind Res. 2009;1305:108–17.
Liou Ok-T, Shen Y-C, Chen C-F, Tsao C-M, Tsai S-Ok. Honokiol protects rat mind from focal cerebral ischemia–reperfusion harm by inhibiting neutrophil infiltration and reactive oxygen species manufacturing. Mind Res. 2003;992:159–66.
Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun. 2015;6:1–16.
Zhang L, Wang X. Hydrophobic ionic liquid‐based mostly ultrasound‐assisted extraction of magnolol and honokiol from cortex Magnoliae officinalis. J Sep Sci. 2010;33:2035–8.
Bause AS, Haigis MC. SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol. 2013;48:634–9.
Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by lack of intercourse steroids. J Biol Chem. 2007;282:27285–97.
Galliera E, Massaccesi L, Banfi G, De Vecchi E, Ragone V, Corsi Romanelli MM, et al. Impact of oxidative stress on bone reworking in periprosthetic osteolysis. Clin Rev Bone Miner Metab. 2021;19:14–23.
Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald L, Feng J. DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res. 2007;86:320–5.
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Tips for evaluation of bone microstructure in rodents utilizing micro–computed tomography. J Bone Min Res. 2010;25:1468–86.
Cheuk KY, Wang XF, Wang J, Zhang Z, Yu FWP, Tam EMS, et al. Sexual dimorphism in cortical and trabecular bone microstructure seems throughout puberty in Chinese language youngsters. J Bone Miner Res. 2018;33:1948–55.
Crowe AR, Yue W. Semi-quantitative dedication of protein expression utilizing immunohistochemistry staining and evaluation: an built-in protocol. Bio Protoc. 2019;9:e3465.
Chen H, Zhang J, Wang Y, Cheuk KY, Hung AL, Lam TP, et al. Irregular lacuno‐canalicular community and damaging correlation between serum osteocalcin and Cobb angle point out irregular osteocyte operate in adolescent idiopathic scoliosis. FASEB J. 2019;33:13882–92.
Ren Y, Lin S, Jing Y, Dechow P, Feng JQ. A novel approach to statistically analyze morphologic modifications in Dmp1-null osteocytes. Join Tissue Res. 2014;55:129–33.
Zhang J, Chen H, Leung RK, Choy KW, Lam TP, Ng BK, et al. Aberrant miR‐145–5p/β‐catenin sign impairs osteocyte operate in adolescent idiopathic scoliosis. FASEB J. 2018;32:6537–49.
Kelly NH, Schimenti JC, Ross FP, van der Meulen MC. A technique for isolating top quality RNA from mouse cortical and cancellous bone. Bone 2014;68:1–5.
Stern AR, Stern MM, Van Dyke ME, Jähn Ok, Prideaux M, Bonewald LF. Isolation and tradition of major osteocytes from the lengthy bones of skeletally mature and aged mice. Biotechniques 2012;52:361–73.
Stegen S, van Gastel N, Eelen G, Ghesquière B, D’Anna F, Thienpont B, et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to help postimplantation bone cell survival. Cell Metab. 2016;23:265–79.
Wang Y, Zhao X, Lotz M, Terkeltaub R, Liu‐Bryan R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes however reversible by way of peroxisome proliferator–activated receptor γ coactivator 1α. Arthritis Rheumatol. 2015;67:2141–53.
[ad_2]
Comments are closed.