[ad_1]
Shellman-Reeve, J. S. Courting methods and conflicts in a monogamous, biparental termite. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 137–144 (1999).
Boomsma, J. J. Past promiscuity: mate-choice commitments in social breeding. Philos. Trans. R. Soc. B: Biol. Sci. 368 (2013).
Nichols, H. J. The causes and penalties of inbreeding avoidance and tolerance in cooperatively breeding vertebrates. J. Zool. 303, 1–14 (2017).
Clutton-Brock, T. H. Feminine switch and inbreeding avoidance in social mammals. Nature 337, 70–72 (1989).
Wolff, J. O. Mother and father suppress replica and stimulate dispersal in opposite-sex juvenile white-footed mice. Nature 359, 409–410 (1992).
Abbott, D. In Primate Social Battle (eds W. A. Mason & S. P. Mendoza) 331–372 (State College of New York Press, 1993).
Koenig, W. D., Haydock, J. & Stanback, M. T. Reproductive roles within the cooperatively breeding acorn woodpecker: incest avoidance versus reproductive competitors. Am. Nat. 151, 243–255 (1998).
Hanby, J. P. & Bygott, J. D. Emigration of subadult lions. Anim. Behav. 35, 161–169 (1987).
Brooked, M. G., Rowley, I., Adams, M. & Baverstock, P. R. Promiscuity: an inbreeding avoidance mechanism in a socially monogamous species? Behav. Ecol. Sociobiol. 26, 191–199 (1990).
Amos, B., Schlotterer, C. & Tautz, D. Social construction of pilot whales revealed by analytical DNA proftling. Science 260, 670–672 (1993).
Sillero-Zubiri, C., Gottelli, D. & Macdonald, D. W. Male philopatry, extra-pack copulations and inbreeding avoidance in Ethiopian wolves (Canis simensis). Behav. Ecol. Sociobiol. 38, 331–340 (1996).
Husseneder, C., Simms, D. M. & Ring, D. R. Genetic variety and genotypic differentiation between the sexes in swarm aggregations lower inbreeding within the Formosan subterranean termite. Insectes Sociaux 53, 212–219 (2006).
Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Developments Ecol. Evol. 3, 230–233 (1988).
Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Developments Ecol. Evol. 11, 201–206 (1996).
Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, relies on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).
Hurst, J. L. et al. Particular person recognition in mice mediated by main urinary proteins. Nature 414, 631–634 (2001).
Vargo, E. L. & Husseneder, C. In Biology of termites: A contemporary synthesis (eds D.E. Bignell, Yves Roisin, & Nathan Lo) 133–164 (Springer, 2011).
Shellman-Reeve, J. S. Dynamics of biparental care within the dampwood termite, Zootermopsis nevadensis (Hagen): response to nitrogen availability. Behav. Ecol. Sociobiol. 26, 389–397 (1990).
Cole, E. L., Ilieş, I. & Rosengaus, R. B. Competing physiological calls for throughout incipient colony basis in a social insect: penalties of pathogenic stress. Entrance. Ecol. Evol. 6 (2018).
Traniello, J. F. A., Rosengaus, R. B. & Savoie, Okay. The event of immunity in a social insect: proof for the group facilitation of illness resistance. Proc. Natl Acad. Sci. 99, 6838–6842 (2002).
Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).
Rosengaus, R. B., Traniello, J. F. A. & Bulmer, M. In biology of termites: a contemporary synthesis (eds D. E. Bignell, Yves Roisin & Nathan Lo) 165–191 (Springer, 2011).
Cole, E. L., Bayne, H. & Rosengaus, R. B. Younger however not defenceless: antifungal exercise throughout embryonic growth of a social insect. R. Soc. Open Sci. 7, 191418–191418 (2020).
Rosengaus, R. B. & Traniello, J. F. Illness susceptibility and the adaptive nature of colony demography within the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 50, 546–556 (2001).
Cole, E. L. & Rosengaus, R. B. Pathogenic dynamics throughout colony ontogeny reinforce potential drivers of termite eusociality: mate help and biparental care. Entrance. Ecol. Evol. 7 (2019).
Chouvenc, T. The relative significance of queen and king preliminary weights in termite colony basis success. Insectes Sociaux 66, 177–184 (2019).
Matsuura, Okay. & Kobayashi, N. Termite queens regulate egg dimension in response to colony growth. Behav. Ecol. 21, 1018–1023 (2010).
Calleri, D. V., McGrail Reid, E., Rosengaus, R. B., Vargo, E. L. & Traniello, J. F. A. Inbreeding and illness resistance in a social insect: results of heterozygosity on immunocompetence within the termite Zootermopsis angusticollis. Proc. R. Soc. B: Biol. Sci. 273, 2633–2640 (2006).
DeHeer, C. J. & Vargo, E. L. An oblique take a look at of inbreeding melancholy within the termites Reticulitermes flavipes and Reticulitermes virginicus. Behav. Ecol. Sociobiol. 59, 753–761 (2006).
Aguero, C. M., Eyer, P.-A., Martin, J. S., Bulmer, M. S. & Vargo, E. L. Pure variation in colony inbreeding doesn’t affect susceptibility to a fungal pathogen in a termite. Ecol. Evol. 11, 3072–3083 (2021).
Aguero, C., Eyer, P. A. & Vargo, E. L. Elevated genetic variety from colony merging in termites doesn’t enhance survival in opposition to a fungal pathogen. Sci. Rep. 10, 4212 (2020).
Rosengaus, R. B. & Traniello, J. F. Illness danger as a price of outbreeding within the termite Zootermopsis angusticollis. Proc. Natl Acad. Sci. 90, 6641–6645 (1993).
Eyer, P.-A. et al. In depth human-mediated leap dispersal inside and throughout the native and launched ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2021).
Perdereau, E. et al. World genetic evaluation reveals the putative native supply of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).
Sinotte, V. M. et al. Feminine-biased intercourse allocation and lack of inbreeding avoidance in Cubitermes termites. Ecol. Evolution 11, 5598–5605 (2021).
Li, G., Gao, Y., Solar, P., Lei, C. & Huang, Q. Elements affecting mate alternative within the subterranean termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). J. Ethol. 31, 159–164 (2013).
Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. Mechanisms of inbreeding avoidance within the one-piece drywood termite Neotermes chilensis. Insectes Sociaux 62, 237–245 (2015).
Miyaguni, Y., Agarie, A., Sugio, Okay., Tsuji, Okay. & Kobayashi, Okay. Caste growth and intercourse ratio of the Ryukyu drywood termite Neotermes sugioi and its potential mechanisms. Sci. Rep. 11, 15037 (2021).
Nutting, W. L. In Biology of Termites (eds Kumar Krishna & Frances M. Weesner) 233–282 (Tutorial Press, 1969).
Fougeyrollas, R. et al. Dispersal and mating methods in two neotropical soil-feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insectes Sociaux 65, 251–262 (2018).
Shellman-Reeve, J. S. Genetic relatedness and associate desire in a monogamous, wood-dwelling termite. Anim. Behav. 61, 869–876 (2001).
Zhang, Z.-Y. et al. Biochemical, molecular, and morphological variations of flight muscular tissues earlier than and after dispersal flight in a eusocial termite, Reticulitermes chinensis. Insect Sci. 28, 77–92 (2021).
Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).
Goodisman, M. A. D. & Crozier, R. H. Inhabitants and colony genetic construction of the primitive termite Mastotermes Darwiniensis. Evolution 56, 70–83 (2002).
Schmidt, A. M., Jacklyn, P. & Korb, J. Remoted in an ocean of grass: low ranges of gene movement between termite subpopulations. Mol. Ecol. 22, 2096–2105 (2013).
Thompson, G. J., Lenz, M., Crozier, R. H. & Crespi, B. J. Molecular-genetic analyses of dispersal and breeding behaviour within the Australian termite Coptotermes lacteus: proof for non-random mating in a swarm-dispersal mating system. Aust. J. Zool. 55, 219–227 (2007).
Vargo, E. L. Range of termite breeding methods. Bugs 10, 52 (2019).
Tranter, C., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Risk detection: contextual recognition and response to parasites by ants. Behav. Ecol. 26, 396–405 (2014).
Hussain, A., Tian, M.-Y., He, Y.-R., Bland, J. M. & Gu, W.-X. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki in direction of entomopathogenic fungal volatiles. Biol. Management 55, 166–173 (2010).
Yanagawa, A., Imai, T., Akino, T., Toh, Y. & Yoshimura, T. Olfactory cues from pathogenic fungus have an effect on the path of movement of termites, Coptotermes formosanus. J. Chem. Ecol. 41, 1118–1126 (2015).
Rosengaus, R. B., James, L.-T., Hartke, T. R. & Brent, C. S. Mate desire and illness danger in Zootermopsis angusticollis (Isoptera: Termopsidae). Environ. Entomol. 40, 1554–1565 (2011).
Beani, L. et al. Cuticular hydrocarbons as cues of intercourse and well being situation in Polistes dominula wasps. Insectes Sociaux 66, 543–553 (2019).
Waser, P. M., Austad, S. N. & Keane, B. When ought to animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).
Bengtsson, B. O. Avoiding inbreeding: at what value? J. Theor. Biol. 73, 439–444 (1978).
Lehmann, L. & Perrin, N. Inbreeding avoidance via kin recognition: Picky females enhance male dispersal. Am. Nat. 162, 638–652 (2003).
Basalingappa, S. Environmental hazards to reproductives of Odontotermes assmuthi Holgrem. Indian Zool. 1, 45–50 (1970).
Darlington, J., Sands, W. & Pomeroy, D. Distribution and post-settlement survival within the subject by reproductive pairs of Hodotermes mossambicus hagen (isoptera, hodotermitida). Insectes Sociaux 24, 353–358 (1977).
Dial, Okay. P. & Vaughan, T. A. Opportunistic predation on alate termites in Kenya. Biotropica 19, 185–187 (1987).
Korb, J. & Salewski, V. Predation on swarming termites by birds. Afr. J. Ecol. 38, 173–174 (2000).
Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. ReproduCtion–immunity Commerce-offs In Bugs. Annu. Rev. Entomol. 61, 239–256 (2016).
Calleri, D. II, Rosengaus, R. & Traniello, J. A. Illness and colony basis within the dampwood termite Zootermopsis angusticollis: The survival benefit of nestmate pairs. Naturwissenschaften 92, 300–304 (2005).
Fei, H. X. & Henderson, G. Comparative examine of incipient colony growth within the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera,Rhinotermitidae). Insectes Sociaux 50, 226–233 (2003).
Rosengaus, R. B., Cornelisse, T., Guschanski, Okay. & Traniello, J. F. A. Inducible immune proteins within the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94, 25–33 (2007).
Rosengaus, R. B., Traniello, J. F. A., Chen, T., Brown, J. J. & Karp, R. D. Immunity in a social insect. Naturwissenschaften 86, 588–591 (1999).
Solar, Q., Haynes, Okay. F., Hampton, J. D. & Zhou, X. Intercourse-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79 (2017).
Eyer, P.-A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success within the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).
Barrett, S. C. H. & Charlesworth, D. Results of a change within the stage of inbreeding on the genetic load. Nature 352, 522 (1991).
Crnokrak, P. & Spencer, C. H. B. Perspective: purging the genetic load. A evaluate of the experimental proof. Evolution 56, 2347–2358 (2002).
Day, S. B., Bryant, E. H. & Meffert, L. M. The affect of variable charges of inbreeding on health, environmental responsiveness, and evolutionary potential. Evolution 57, 1314–1324 (2003).
Syren, R. M. & Luykx, P. Everlasting segmental interchange advanced within the termite Incisitermes schwarzi. Nature 266, 167–168 (1977).
Fontana, F. A number of reciprocal chromosomal translocations and their function within the evolution of sociality in termites. Ethol. Ecol. Evolution 3, 15–19 (1991).
Matsuura, Okay. A take a look at of the haplodiploid analogy speculation within the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 646–649 (2002).
Yashiro, T. et al. Enhanced heterozygosity from male meiotic chromosome chains is outdated by hybrid feminine asexuality in termites. Proc. Natl. Acad. Sci. 118, e2009533118 (2021).
Charlesworth, B. & Wall, J. D. Inbreeding, heterozygote benefit and the evolution of neo-X and neo-Y intercourse chromosomes. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 51–56 (1999).
Hellemans, S. et al. Widespread incidence of asexual replica in increased termites of the Termes group (Termitidae: Termitinae). BMC Evol. Biol. 19, 131 (2019).
Vargo, E. L., Labadie, P. E. & Matsuura, Okay. Asexual queen succession within the subterranean termite Reticulitermes virginicus. Proc. R. Soc. B: Biol. Sci. 279, 813–819 (2012).
Matsuura, Okay. et al. Queen succession via asexual replica in termites. Science 323, 1687–1687 (2009).
Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: emergence and evolution of colony-level illness safety. Annu. Rev. Entomol. 63, 105–123 (2018).
Van Meyel, S., Körner, M. & Meunier, J. Social immunity: why we should always examine its nature, evolution and capabilities throughout all social methods. Curr. Opin. Insect Sci. 28, 1–7 (2018).
Cotter, S. C. & Kilner, R. M. Private immunity versus social immunity. Behav. Ecol. 21, 663–668 (2010).
Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L. & Huang, Q.-Y. The mechanisms of social immunity in opposition to fungal infections in eusocial bugs. Toxins 11, 244 (2019).
Chouvenc, T. & Su, N. Y. When subterranean termites problem the foundations of fungal epizootics. Plos One 7, e34484 (2012).
Davis, H. E., Meconcelli, S., Radek, R. & McMahon, D. P. Termites form their collective behavioural response based mostly on stage of an infection. Sci. Rep. 8, 14433–14433 (2018).
Cassidy, S. T. et al. Illness defences throughout ranges of organic group: particular person and social immunity in acorn ants. Anim. Behav. 179, 73–81 (2021).
López-Uribe, M. M., Sconiers, W. B., Frank, S. D., Dunn, R. R. & Tarpy, D. R. Decreased mobile immune response in social insect lineages. Biol. Lett. 12, 20150984 (2016).
He, S. et al. Proof for decreased immune gene variety and exercise throughout the evolution of termites. Proc. R. Soc. B: Biol. Sci. 288, 20203168 (2021).
Viljakainen, L. et al. Speedy evolution of immune proteins in social bugs. Mol. Biol. Evol. 26, 1791–1801 (2009).
Meusemann, Okay., Korb, J., Schughart, M. & Staubach, F. No proof for single-copy immune-gene particular alerts of choice in termites. Entrance. Ecol. Evol. 8 (2020).
Otani, S., Bos, N. & Yek, S. H. Transitional complexity of social insect immunity. Entrance. Ecol. Evol. 4 (2016).
Barribeau, S. M. et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83 (2015).
de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Meta-analytic proof that animals not often keep away from inbreeding. Nat. Ecol. Evol. 5, 949–964 (2021).
Szulkin, M., Stopher, Okay. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or desire in animals? Developments Ecol. Evol. 28, 205–211 (2013).
Fox, C. W. & Reed, D. H. Inbreeding melancholy will increase with environmental stress: an experimental examine and meta-analysis. Evol. 65, 246–258 (2011).
Kokko, H., Ots, I. & Tregenza, T. When to not keep away from inbreeding. Evolution 60, 467–475 (2006).
Zayed, A. & Packer, L. Complementary intercourse dedication considerably will increase extinction proneness of haplodiploid populations. Proc. Natl Acad. Sci. USA 102, 10742–10746 (2005).
Ross, Okay. G. & Fletcher, D. J. C. Diploid male manufacturing — a big colony mortality issue within the fireplace ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19, 283–291 (1986).
Eyer, P.-A., Salin, J., Helms, A. M. & Vargo, E. L. Distinct chemical blends produced by totally different reproductive castes within the subterranean termite Reticulitermes flavipes. Sci. Rep. 11, 4471 (2021).
Kearse, M. et al. Geneious Primary: An built-in and extendable desktop software program platform for the group and evaluation of sequence knowledge. Bioinformatics 28, 1647–1649 (2012).
Queller, D. C. & Goodnight, Okay. F. Estimating relatedness utilizing genetic markers. Evolution 43, 258–275 (1989).
Wang, J. Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).
Jombart, T. adegenet: a R package deal for the multivariate evaluation of genetic markers. Bioinformatics 24, 1403–1405 (2008).
Rosengaus, R. B., Moustakas, J. E., Calleri, D. V. & Traniello, J. F. A. Nesting ecology and cuticular microbial masses in dampwood (Zootermopsis angusticollis) and drywood termites (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J. Insect Sci. 3, 31 (2003).
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. Okay. & Schloss, P. D. Improvement of a dual-index sequencing technique and curation pipeline for analyzing amplicon sequence knowledge on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
White, T. J., Burns, T., Lee, S. & Taylor, J. in PCR protocols: A information to strategies and purposes (eds. M. A. Innis, D. H. Gelfand, J. J. Snisky, & T. J. White) 315–322 (Tutorial Press, 1990).
Aguero, C. M., Eyer, P.-A., Crippen, T. L. & Vargo, E. L. Decreased environmental microbial variety on the cuticle and within the galleries of a subterranean termite in comparison with surrounding soil. Microb. Ecol. 81, 1054–1063 (2021).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome knowledge science utilizing QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583 (2016).
Hamady, M., Lozupone, C. & Knight, R. Quick UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities together with evaluation of pyrosequencing and PhyloChip knowledge. ISME J. 4, 17–27 (2010).
Therneau, T. & Grambsch, P. Modeling Survival Information: Extending the Cox Mannequin (Springer, 2000).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Becoming linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).
[ad_2]
Comments are closed.