Identification of microbial taxa current in Ctenocephalides felis (cat flea) reveals widespread co-infection and associations with vector phylogeny – Parasites & Vectors – Parasites & Vectors

[ad_1]

  • Rust MK. The biology and ecology of cat fleas and developments of their pest administration: A assessment. Bugs. 2017;8:51.

    Article 

    Google Scholar
     

  • Lawrence AL, Hii SF, Chong R, Webb CE, Traub R, Brown G, et al. Analysis of the bacterial microbiome of two flea species utilizing completely different DNA-isolation methods supplies insights into flea host ecology. FEMS Microbiol Ecol. 2015;91:11.

    Article 

    Google Scholar
     

  • Vasconcelos EJR, Billeter SA, Jett LA, Meinersmann RJ, Barr MC, Diniz PPVP, et al. Assessing cat flea microbiomes in northern and southern California by 16S rRNA next-generation sequencing. Vector Borne Zoonotic Dis. 2018;18:491–9.

    Article 
    PubMed 

    Google Scholar
     

  • Chomel BB, Kasten RW, Floyd-Hawkins Okay, Chi B, Yamamoto Okay, Roberts-Wilson J, et al. Experimental transmission of Bartonella henselae by the cat flea. J Clin Microbiol. 1996;34:1952–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kordick DL, Hilyard EJ, Hadfield TEDL, Wilson KH, Steigerwalt AG, Brenner DONJ, et al. Bartonella clarridgeiae, a newly acknowledged zoonotic pathogen inflicting inoculation papules, fever, and lymphadenopathy (cat scratch illness). J Clin Microbiol. 1997;35:1813–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avidor B, Graidy M, Efrat G, Leibowitz C, Shapira G, Schattner A, et al. Bartonella koehlerae, a brand new cat-associated agent of culture-negative human endocarditis. J Clin Microbiol. 2004;42:3462–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown LD, Macaluso KR. Rickettsia felis, an rising flea-borne rickettsiosis. Curr Trop Med Rep. 2016;3:27–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chomel BB, Kasten RW, Williams C, Wey AC, Henn JB, Maggi RG, et al. Bartonella endocarditis: a pathology shared by animal reservoirs and sufferers. Ann NY Acad Sci. 2009;1166:120–6.

    Article 
    PubMed 

    Google Scholar
     

  • Breitschwerdt EB. Bartonellosis, one well being and all creatures nice and small. Vet Dermatol. 2017;28:96–106.

    Article 
    PubMed 

    Google Scholar
     

  • Breitschwerdt E, Sontakke S, Hopkins S. Neurological manifestations of Bartonellosis in immunocompetent sufferers: a composite of experiences from 2005–2012. J Neuroparasitology. 2012;3:15.

    Article 

    Google Scholar
     

  • Hirunkanokpun S, Thepparit C, Foil LD, Macaluso KR. Horizontal transmission of Rickettsia felis between cat fleas Ctenocephalides felis. Mol Ecol. 2011;20:4577–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wedincamp J, Foil LD. Vertical transmission of Rickettsia felis within the cat flea (Ctenocephalides felis Bouche). J Vector Ecol. 2002;27:96–101.

    PubMed 

    Google Scholar
     

  • Manvell C, Ferris Okay, Maggi R, Breitschwerdt EB, Lashnits E. Prevalence of vector-borne pathogens in reproductive and non-reproductive tissue samples from free-roaming home cats within the South Atlantic USA. Pathogens. 2021;10:17.

    Article 

    Google Scholar
     

  • Koehler JE, Glaser CA, Jordan W. Rochalimaea henselae an infection a brand new zoonosis with the home cat as reservoir. J Am Med Assoc. 1994;271:532–5.

    Article 

    Google Scholar
     

  • Lashnits EW, Dawson DE, Breitschwerdt E, Lanzas C. Ecological and socioeconomic elements related to Bartonella henselae publicity in canines examined for vector-borne ailments in North Carolina. Vector Borne Zoonotic Dis. 2019;19:582–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jameson P, Greene C, Regnery R, Dryden M, Marks A, Brown J, et al. Prevalence of Bartonella henselae antibodies in pet cats all through areas of North America. J Infect Dis. 1995;172:1145–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanton LS, Quade BR, Bouyer DH. Differentiation of Rickettsia felis and Rickettsia felis-like organisms through restriction fragment size polymorphism evaluation. Vector Borne Zoonotic Dis. 2019;19:637–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loyola S, Flores-Mendoza C, Torre A, Kocher C, Melendrez M, Luce-Fedrow A, et al. Rickettsia asembonensis characterization by multilocus sequence typing of full genes. Peru Emerg Infect Dis. 2014;24:931–3.

    Article 

    Google Scholar
     

  • Eremeeva ME, Capps D, McBride CL, Williams-Newkirk AJ, Dasch GA, Salzer JS, et al. Detection of Rickettsia asembonensis in fleas (Siphonaptera: Pulicidae, Ceratophyllidae) collected in 5 counties in Georgia, United States. J Med Entomol. 2020;57:1246–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira FC, Fonseca DM, Hamilton G, Value D. Metagenomic evaluation of human – biting cat fleas in city northeastern United States of America reveals an rising zoonotic pathogen. Sci Rep. 2020;10(1):1-8. .

    Article 

    Google Scholar
     

  • Hilgenboecker Okay, Hammerstein P, Schlattmann P, Telschow A, Werren JH. What number of species are contaminated with Wolbachia?—A statistical evaluation of present knowledge. FEMS Microbiol Lett. 2008;281:215–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorham CH, Fang QQ, Durden LA. Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol. 2003;89:283–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werren JH, Baldo L, Clark ME. Wolbachia: grasp manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al. Pure microbe-mediated refractoriness to Plasmodium an infection in Anopheles gambiae. Science. 2011;332:855–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzki Okay, Iturbe-Ormaetxe I, et al. Scaled deployment of Wolbachia to guard the neighborhood from Aedes transmitted arboviruses. Gates Open Res. 2018;2:36.

    Article 
    PubMed 

    Google Scholar
     

  • Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, et al. Evolution of Wolbachia mutualism and reproductive parasitism: perception from two novel strains that co-infect cat fleas. PeerJ. 2020;8:39.

    Article 

    Google Scholar
     

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impression sequence-based microbiome analyses. BMC Biol. 2014;12:12.

    Article 

    Google Scholar
     

  • Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome research: points and suggestions. Traits Microbiol. 2019;27:105–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lejal E, Estrada-peña A, Marsot M, Cosson J, Rué O, Mariadassou M, et al. Taxon look from extraction and amplification steps demonstrates the worth of a number of controls in tick microbiota evaluation. Entrance Microbiol. 2020;11:10.

    Article 

    Google Scholar
     

  • Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Entrance Cell Infect Microbiol. 2017;7:14.

    Article 

    Google Scholar
     

  • Jones RT, Bernhardt SA, Martin AP, Gage KL. Interactions amongst symbionts of Oropsylla spp. (Siphonoptera: Ceratophyllidae). J Med Entomol. 2012;49:492–6.

    Article 
    PubMed 

    Google Scholar
     

  • Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF. Rickettsial an infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. J Med Entomol. 2002;39:809–13.

    Article 
    PubMed 

    Google Scholar
     

  • Carmichael JR, Fuerst PA. A rickettsial blended an infection in a Dermacentor variabilis tick from Ohio. Ann NY Acad Sci. 2006;1078:334–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noden BH, Radulovic S, Higgins JA, Azad AF. Molecular Identification of Rickettsia typhi and R. felis in co-infected Ctenocephalides felis (Siphonaptera: Pulicidae). J Med Entomol. 1998;35:410–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gloria-Soria A, Armstrong PM, Turner PE, Turner PE. An infection price of Aedes aegypti mosquitoes with dengue virus depends upon the interplay between temperature and mosquito genotype. Proc R Soc. 2017;284:9.


    Google Scholar
     

  • Lambrechts L, Halbert J, Durand P, Gouagna LC, Koella JC. Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum. Malar J. 2005;4:8.

    Article 

    Google Scholar
     

  • Lawrence AL, Webb CE, Clark NJ, Halajian A, Mihalca AD, Miret J, et al. Out-of-Africa, human-mediated dispersal of the widespread cat flea, Ctenocephalides felis: the hitchhiker’s information to world domination. Int J Parasitol. 2019;49:321–36.

    Article 
    PubMed 

    Google Scholar
     

  • Chandra S, Forsyth M, Lawrence AL, Emery D, Slapeta J. Cat fleas (Ctenocephalides felis) from cats and canines in New Zealand : molecular characterization, presence of Rickettsia felis and Bartonella clarridgeiae and comparability with Australia. Vet Parasitol. 2017;234:25–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence AL, Brown GK, Peters B, Spielman DS, Morin-Adeline V, Šlapeta J. Excessive phylogenetic variety of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers. Med Vet Entomol. 2014;28:330–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nationwide Communicable Illness Middle. Pictorial keys: arthropods, reptiles, birds, and mammals of public well being significance. US: Public Well being Service publication; 1969.


    Google Scholar
     

  • Fox I. Fleas of Jap United States. Ames: The Iowa State Faculty Press; 1940.

    Book 

    Google Scholar
     

  • Linardi PM, Santos JLC. Ctenocephalides felis felis vs. Ctenocephalides canis (Siphonaptera:Pulicidae): some points in accurately establish these species. Rev Bras Parasitol Vet. 2012;21:345–54.

    Article 
    PubMed 

    Google Scholar
     

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Analysis of normal 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based variety research. Nucleic Acids Res. 2013;41:11.

    Article 

    Google Scholar
     

  • Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: Excessive decision pattern interference from Illumina amplicon knowledge. Nat Strategies. 2016;13:581–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Easy statistical identification and removing of contaminant sequences in marker-gene and metagenomics knowledge. Microbiome. 2018;6:14.

    Article 

    Google Scholar
     

  • Paradis E, Schliep Okay. ape 5.0: an surroundings for contemporary phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saitou N, Nei M. The neighbor-joining technique: a brand new technique for reconstructing phylogenetic timber. Mol Biol Evol. 1987;4:406–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Letunic I, Bork P. Interactive tree of life (iTOL) v5: an internet software for phylogenetic tree show and annotation. Nucleic Acids Res. 2021;49:293–6.

    Article 

    Google Scholar
     

  • Benson DA, Cavanaugh M, Clark Okay, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:36–42.

    Article 

    Google Scholar
     

  • Paradis E. pegas: an R package deal for inhabitants genetics with an integrated-modular method. Bioinformatics. 2010;26:419–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Webb CO. Exploring the phylogenetic construction of ecological communities: an instance for rain forest timber. Am Nat. 2000;156:145–55.

    Article 
    PubMed 

    Google Scholar
     

  • Bryant JA, Lamanna C, Lè Ne Morlon H, Kerkhoff AJ, Enquist BJ, Inexperienced JL. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant variety. PNAS. 2008;105:11505–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: environment friendly manipulation of organic strings. 2021.

  • Wickham H, François R, Henry L, Müller Okay. dplyr: a grammar of information manipulation. 2021.

  • Nolan R, Padilla-Parra S. filesstrings: an R package deal for file and string manipulation. J Open Supply Softw. 2017. https://doi.org/10.21105/joss.00260.

    Article 

    Google Scholar
     

  • Davis S, Meltzer P. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;14:1846–7.

    Article 

    Google Scholar
     

  • Pedersen TL. ggforce: accelerating ‘ggplot2’. 2021.

  • Wickham H. ggplot2: elegant graphics for knowledge evaluation. New York: Springer-Verlag; 2016.

    Book 

    Google Scholar
     

  • Xiao N. ggsci: scientific journal and sci-fi themed coloration palettes for ‘ggplot2’. 2018.

  • Müller Okay. right here: an easier solution to discover your recordsdata. 2020.

  • Firke S. janitor: easy instruments for inspecting and cleansing soiled knowledge. 2021.

  • Tsirogiannis C, Sandel B. PhyloMeasures: quick and precise algorithms for computing phylogenetic biodiversity measures. 2017.

  • Mcmurdie PJ, Holmes S. phyloseq: an R package deal for reproducible interactive evaluation and graphics of microbiome census knowledge. PLoS ONE. 2013;8:e61217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R instruments for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bache SM, Wickham H. magrittr: a forward-pipe operator for R. 2020.

  • Hervé M. RVAideMemoire: testing and plotting procedures for biostatistics. 2021.

  • Oksanen J, Blanchet FG, Pleasant M, Kindt R, Legendre P, McGlinn D. et al. Vegan: neighborhood ecology package deal. 2020.

  • Okla H, Sosnowska M, Jasik KP, Slodki J, Wojtyczka RD. Nonspecific bacterial flora remoted from the physique floor and inside Ixodes ricinus ticks. Pol J Microbiol. 2012;61:205–9.

    Article 
    PubMed 

    Google Scholar
     

  • Menetrey Q, Sorlin P, Jumas-Bilak E, Chiron R, Dupont C, Marchandin H. Achromobacter xylosoxidans and stenotrophomonas maltophilia: Rising pathogens well-armed for all times within the cystic fibrosis sufferers’ lung. Genes. 2021;12:21.

    Article 

    Google Scholar
     

  • Tall ML, Pham TPT, Bellali S, Ngom II, Delerce J, Lo CI, et al. Anaerococcus marasmi sp. nov., a brand new bacterium remoted from human intestine microbiota. New Microbes New Infect. 2020;35:5.


    Google Scholar
     

  • Veloo ACM, de Vries ED, Jean-Pierre H, van Winkelhoff AJ. Anaerococcus nagyae sp. nov., remoted from human scientific specimens. Anaerobe. 2016;38:111–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muturi EJ, Dunlap C, Smartt CT, Shin D. Resistance to permethrin alters the intestine microbiota of Aedes aegypti. Sci Rep Nat Res. 2021;11:8.


    Google Scholar
     

  • Duan DY, Liu GH, Cheng TY. Microbiome evaluation of the saliva and midgut from partially or absolutely engorged feminine grownup Dermacentor silvarum ticks in China. Exp Appl Acarol. 2020;80:543–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keskin A, Bursali A, Snow DE, Dowd SE, Tekin S. Evaluation of bacterial variety in Hyalomma aegyptium, H. marginatum and H. excavatum ticks by tag-encoded pyrosequencing. Exp Appl Acarol. 2017;73:461–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wexler HM. Bacteroides: the nice, the dangerous, and the nitty-gritty. Clin Microbiol Rev. 2007;20:593–621.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sala-Comorera L, Caudet-Segarra L, Galofré B, Lucena F, Blanch AR, García-Aljaro C. Unravelling the composition of faucet and mineral water microbiota: divergences between next-generation sequencing methods and culture-based strategies. Int J Meals Microbiol. 2020;334:10.

    Article 

    Google Scholar
     

  • Cani PD, de Vos WM. Subsequent-generation helpful microbes: the case of Akkermansia muciniphila. Entrance Microbiol. 2017;8:8.

    Article 

    Google Scholar
     

  • Qu M, Liu G, Zhao J, Li H, Liu W, Yan Y, et al. Destiny of atrazine and its relationship with environmental elements in distinctly completely different lake sediments related to hydrophytes. Environ Pollut. 2020;256:113371.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li T, Nakatsu G, Chen YX, Yau TO, Chu E, Wong S, et al. A novel faecal Lachnoclostridium marker for the non-invasive analysis of colorectal adenoma and most cancers. Intestine. 2020;69:1248–57.

    Article 
    PubMed 

    Google Scholar
     

  • Wasserfallen A, Nolling J, Pfister P, Reeve J, de Macario EC. Phylogenetic evaluation of 18 thermophilic Methanobacterium isolates helps the proposals to create a brand new genus, Methanothermobacter gen. nov., and to reclassify a number of isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol. 2000;50:43–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakao R, Abe T, Funayama S, Sugimoto C. Horizontally transferred genetic parts within the tsetse fly genome: an alignment-free clustering method utilizing Batch Studying Self-Organising Map (BLSOM). Biomed Res Int. 2016;2016:8.

    Article 

    Google Scholar
     

  • Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel micro organism in scientific microbiology laboratories. Clin Microbiol Infec. 2008;14:908–34.

    Article 
    CAS 

    Google Scholar
     

  • He XM, Cheng TY. Tick saliva microbiomes remoted from engorged and partially fed adults of Haemaphysalis flava tick females. J Appl Entomol. 2018;142:173–80.

    Article 
    CAS 

    Google Scholar
     

  • Beard C, Cordon-Rosales C, Durvasula R. Bacterial symbionts of the triatominae and their potential use in charge of chagas illness transmission. Annu Rev Entomol. 2002;47:123–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schabereiter-Gurtner C, Lubitz W, Rölleke S. Software of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting micro organism. J Microbiol Strategies. 2003;52:251–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen C, Toh E, Munro D, Dong Q, Hawlena H. Similarities and differences due to the season in bacterial communities from the blood of rodents and from their flea vectors. ISME J. 2015;9:1662–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breitschwerdt EB, Kordick DL. Bartonella an infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human an infection. Clin Microbiol Rev. 2000;13:428–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggi RG, Richardson T, Breitschwerdt EB, Miller JC. Improvement and validation of a droplet digital PCR assay for the detection and quantification of Bartonella species inside human scientific samples. J Microbiol Strategies. 2020;176:106022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdullah S, Helps C, Tasker S, Newbury H, Wall R. Pathogens in fleas collected from cats and canines: Distribution and prevalence within the UK. Parasit Vectors. 2019;12:10.

    Article 

    Google Scholar
     

  • Lappin MR, Griffin B, Brunt J, Riley A, Burney D, Hawley J, et al. Prevalence of Bartonella species, haemoplasma species, Ehrlichia species, Anaplasma phagocytophilum, and Neorickettsia risticii DNA within the blood of cats and their fleas in the USA. J Feline Med Surg. 2006;8:85–90.

    Article 
    PubMed 

    Google Scholar
     

  • Richards AL, Jiang J, Omulo S, Dare R, Abdirahman Okay, Ali A, et al. Human an infection with Rickettsia felis. Kenya Emerg Infect Dis. 2010;16:1081–6.

    Article 
    PubMed 

    Google Scholar
     

  • Hii SF, Kopp SR, Abdad MY, Thompson MF, O’Leary CA, Rees RL, et al. Molecular proof helps the position of canines as potential reservoirs for Rickettsia felis. Vector Borne Zoonotic Dis. 2011;11:1007–12.

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Comments are closed.