[ad_1]
Substance Abuse and Psychological Well being Providers Administration. Key substance use and psychological well being indicators in the USA: Outcomes from the 2018 Nationwide Survey on Drug Use and Well being. HHS Publ. No. PEP19–5068, NSDUH Ser. H-54 (2018) doi:https://doi.org/10.1016/j.drugalcdep.2016.10.042.
Kasperski, S. J. et al. Faculty college students’ use of cocaine: Outcomes from a longitudinal research. Addict. Behav. 36, 408–411 (2011).
Becker, J. B. & Hu, M. Intercourse variations in drug abuse. Entrance. Neuroendocrinol. 29, 36–47 (2008).
Becker, J. B. & Koob, G. F. Intercourse variations in animal fashions: Concentrate on habit. Pharmacol. Rev. 68, 242–263 (2016).
Zakharova, E., Wade, D. & Izenwasser, S. Sensitivity to cocaine conditioned reward relies on intercourse and age. Pharmacol. Biochem. Behav. 92, 131–134 (2009).
Russo, S. J. et al. Intercourse variations within the conditioned rewarding results of cocaine. Mind Res. 970, 214–220 (2003).
Lynch, W. J. & Carroll, M. E. Intercourse variations within the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 144, 77–82 (1999).
Hu, M., Crombag, H. S., Robinson, T. E. & Becker, J. B. Organic foundation of intercourse variations within the propensity to self-administer cocaine. Neuropsychopharmacology 29, 81–85 (2004).
López, A. J. et al. Cocaine self-administration induces sex-dependent protein expression within the nucleus accumbens. Commun. Biol. 4, 883 (2021).
Carroll, M. E. & Lynch, W. J. research intercourse variations in habit utilizing animal fashions. Addict. Biol. 21, 1007–1029 (2016).
Walker, D. M. & Nestler, E. J. Neuroepigenetics and habit. Handb. Clin. Neurol. https://doi.org/10.1016/B978-0-444-64076-5.00048-X (2018).
Walker, D. M. et al. Cocaine self-administration alters transcriptome-wide responses within the mind’s reward circuitry. Biol. Psychiatry 84, 867–880 (2018).
Pierce, R. C. et al. Environmental, genetic and epigenetic contributions to cocaine habit. Neuropsychopharmacology 43, 1471–1480 (2018).
De Sa Nogueira, D., Merienne, Ok. & Befort, Ok. Neuroepigenetics and addictive behaviors: The place can we stand?. Neurosci. Biobehav. Rev. 106, 58–72 (2019).
Robison, A. J. & Nestler, E. J. Transcriptional and epigenetic mechanisms of habit. Nat. Rev. Neurosci. 12, 623–637 (2011).
Nestler, E. J. & Lüscher, C. The molecular foundation of drug habit: Linking epigenetic to synaptic and circuit mechanisms. Neuron 102, 48–59 (2019).
Walker, D. M., Cates, H. M., Heller, E. A. & Nestler, E. J. Regulation of chromatin states by medication of abuse. Curr. Opin. Neurobiol. 30, 112–121 (2015).
Kumar, A. et al. Chromatin reworking is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005).
Russo, S. J. & Nestler, E. J. The mind reward circuitry in temper issues. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3381 (2013).
Koob, G. F. & Volkow, N. D. Neurobiology of habit: A neurocircuitry evaluation. The Lancet Psychiatry 3, 760–773 (2016).
Jordi, E. et al. Differential results of cocaine on histone posttranslational modifications in recognized populations of striatal neurons. Proc. Natl. Acad. Sci. 110, 9511–9516 (2013).
Zhou, Z., Yuan, Q., Mash, D. C. & Goldman, D. Substance-specific and shared transcription and epigenetic modifications within the human hippocampus chronically uncovered to cocaine and alcohol. Proc. Natl. Acad. Sci. 108, 6626–6631 (2011).
Gajewski, P. A. et al. Epigenetic regulation of hippocampal fosb expression controls behavioral responses to cocaine. J. Neurosci. 39, 8305–8314 (2019).
De Sa Nogueira, D. et al. Hippocampal cannabinoid 1 receptors are modulated following cocaine self-administration in male rats. Mol. Neurobiol. 59, 1896–1911 (2022).
Sadri-Vakili, G. et al. Cocaine-induced chromatin reworking will increase brain-derived neurotrophic issue transcription within the Rat Medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J. Neurosci. https://doi.org/10.1523/jneurosci.2328-10.2010 (2010).
Zhang, Y. X. et al. The histone demethylase KDM6B within the medial prefrontal cortex epigenetically regulates cocaine reward reminiscence. Neuropharmacology 141, 113–125 (2018).
Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).
Sadri-Vakili, G. Cocaine triggers epigenetic alterations within the corticostriatal circuit. Mind Res. 1628, 50–59 (2015).
Werner, C. T., Altshuler, R. D., Shaham, Y. & Li, X. Epigenetic mechanisms in drug relapse. Biol. Psychiatry 89, 331–338 (2021).
Feng, J. et al. Power cocaine-regulated epigenomic modifications in mouse nucleus accumbens. Genome Biol. 15, R65 (2014).
Bernstein, B. E. et al. A bivalent chromatin construction marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
Voigt, P., Tee, W.-W. & Reinberg, D. A double tackle bivalent promoters. Genes Dev. 27, 1318–1338 (2013).
Kumar, D., Cinghu, S., Oldfield, A. J., Yang, P. & Jothi, R. Decoding the operate of bivalent chromatin in improvement and most cancers. Genome Res. 31, 2170–2184 (2021).
Nasca, C. et al. Position of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to emphasize. Neuron 96, 402–413 (2017).
Yan, L. et al. Epigenomic panorama of human fetal mind, coronary heart, and liver. J. Biol. Chem. 291, 4386–4398 (2016).
Weiner, A. et al. Co-ChIP permits genome-wide mapping of histone mark co-occurrence at single-molecule decision. Nat. Biotechnol. 34, 953–961 (2016).
Carpenter, M. D. et al. Nr4a1 suppresses cocaine-induced conduct by way of epigenetic regulation of homeostatic goal genes. Nat. Commun. 11, 504 (2020).
Savell, Ok. E. et al. A dopamine-induced gene expression signature regulates neuronal operate and cocaine response. Sci. Adv. 6, eaba4221 (2020).
Cirnaru, M.-D. et al. Nuclear receptor nr4a1 regulates striatal striosome improvement and dopamine D 1 receptor signaling. Eneuro 6, ENEURO.0305-19.2019 (2019).
Bourhis, E. et al. The transcription elements Nur77 and retinoid X receptors take part in amphetamine-induced locomotor actions. Psychopharmacology 202, 635–648 (2009).
Volpicelli, F. et al. Bdnf gene is a downstream goal of Nurr1 transcription consider rat midbrain neurons in vitro. J. Neurochem. 102, 441–453 (2007).
Kadkhodaei, B. et al. Nurr1 is required for upkeep of maturing and grownup midbrain dopamine neurons. J. Neurosci. 29, 15923–15932 (2009).
Bridi, M. S., Hawk, J. D., Chatterjee, S., Protected, S. & Abel, T. Pharmacological activators of the NR4A nuclear receptors improve LTP in a CREB/CBP-dependent method. Neuropsychopharmacology 42, 1243–1253 (2017).
Xu, S. J. & Heller, E. A. Single pattern sequencing (S3EQ) of epigenome and transcriptome in nucleus accumbens. J. Neurosci. Strategies 308, 62–73 (2018).
Peng, G.-H. & Chen, S. Double chromatin immunoprecipitation: Evaluation of goal co-occupancy of retinal transcription elements. In Strategies in Molecular Biology (eds Weber, B. H. F. & Langmann, T.) 311–328 (Humana Press, 2012). https://doi.org/10.1007/978-1-62703-080-9_22.
Barth, T. Ok. & Imhof, A. Quick alerts and sluggish marks: The dynamics of histone modifications. Tendencies Biochem. Sci. 35, 618–626 (2010).
Zsindely, N. & Bodai, L. Histone methylation in Huntington’s illness: Are bivalent promoters the crucial targets?. Neural Regen. Res. 13, 1191 (2018).
Rodriguez, J. et al. Bivalent domains implement transcriptional reminiscence of DNA methylated genes in most cancers cells. Proc. Natl. Acad. Sci. 105, 19809–19814 (2008).
Corridor, A. W. et al. Bivalent chromatin domains in glioblastoma reveal a subtype-specific signature of glioma stem cells. Most cancers Res. 78, 2463–2474 (2018).
Curry, E. et al. Genes predisposed to DNA hypermethylation throughout acquired resistance to chemotherapy are recognized in ovarian tumors by bivalent chromatin domains at preliminary prognosis. Most cancers Res. 78, 1383–1391 (2018).
Bernhart, S. H. et al. Modifications of bivalent chromatin coincide with elevated expression of developmental genes in most cancers. Sci. Rep. 6, 37393 (2016).
Belin, D. & Everitt, B. J. Cocaine searching for habits depend on dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).
Boja, J. W. & Kuhar, M. J. [3H]cocaine binding and inhibition of [3H]dopamine uptake is analogous in each the rat striatum and nucleus accumbens. Eur. J. Pharmacol. 173, 215–217 (1989).
Veeneman, M. M. J., Damsteegt, R. & Vanderschuren, L. J. M. J. The nucleus accumbens shell and the dorsolateral striatum mediate the reinforcing results of cocaine by way of a serial connection. Behav. Pharmacol. 26, 193–199 (2015).
Carpenter, M. D. et al. Cell-type particular profiling of histone post-translational modifications within the grownup mouse striatum. bioRxiv 17, 11 (2022).
Davis, M. I. & Puhl, H. L. Nr4a1-eGFP is a marker of striosome-matrix structure, improvement and exercise within the prolonged striatum. PLoS ONE 6, e16619 (2011).
Lobo, M. Ok., Karsten, S. L., Grey, M., Geschwind, D. H. & Yang, X. W. FACS-array profiling of striatal projection neuron subtypes in juvenile and grownup mouse brains. Nat. Neurosci. 9, 443–452 (2006).
Edwards, S., Bachtell, R. Ok., Guzman, D., Whisler, Ok. N. & Self, D. W. Emergence of context-associated GluR1 and ERK phosphorylation within the nucleus accumbens core throughout withdrawal from cocaine self-administration. Addict. Biol. 16, 450–457 (2011).
Salinas, A. G., Davis, M. I., Lovinger, D. M. & Mateo, Y. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum. Neuropharmacology 108, 275–283 (2016).
Calo, E. & Wysocka, J. Modification of enhancer chromatin: What, how, and why?. Mol. Cell 49, 825–837 (2013).
Pekowska, A. et al. H3K4 tri-methylation offers an epigenetic signature of energetic enhancers. EMBO J. 30, 4198–4210 (2011).
Hawk, J. D. et al. NR4A nuclear receptors assist reminiscence enhancement by histone deacetylase inhibitors. J. Clin. Make investments. 122, 3593–3602 (2012).
Kwapis, J. L. et al. Epigenetic regulation of the circadian gene Per1 contributes to age-related modifications in hippocampal reminiscence. Nat. Commun. 9, 3323 (2018).
Kang, S.-A. et al. Regulation of Nur77 protein turnover by way of acetylation and deacetylation induced by p300 and HDAC1. Biochem. Pharmacol. 80, 867–873 (2010).
Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).
Du, Y. et al. Structural mechanism of bivalent histone H3K4me3K9me3 recognition by the spindlin1/C11orf84 complicated in rRNA transcription activation. Nat. Commun. 12, 949 (2021).
Cabrera Zapata, L. E. et al. X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell. Mol. Life Sci. 78, 7043–7060 (2021).
Phillips, R. A. et al. An atlas of transcriptionally outlined cell populations within the rat ventral tegmental space. Cell Rep. 39, 110616 (2022).
Jaric, I., Rocks, D., Greally, J. M., Suzuki, M. & Kundakovic, M. Chromatin group within the feminine mouse mind fluctuates throughout the oestrous cycle. Nat. Commun. 10, 2851 (2019).
Arnold, A. P. et al. The significance of getting two X chromosomes. Philos. Trans. R. Soc. B. Biol. Sci. 371, 20150113 (2016).
Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous profiling of a number of chromatin proteins in the identical cells. Mol. Cell 81, 4736-4746.e5 (2021).
Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription elements in complicated tissues. Nat. Biotechnol. 39, 825–835 (2021).
O’Geen, H. et al. dCas9-based epigenome modifying suggests acquisition of histone methylation will not be ample for goal gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).
Nieuwenhuis, S., Forstmann, B. U. & Wagenmakers, E.-J. Inaccurate analyses of interactions in neuroscience: An issue of significance. Nat. Neurosci. 14, 1105–1107 (2011).
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Energy 3: A versatile statistical energy evaluation program for the social, behavioral, and biomedical sciences. Behav. Res. Strategies 39, 175–191 (2007).
Livak, Ok. J. & Schmittgen, T. D. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two−ΔΔCT technique. Strategies 25, 402–408 (2001).
Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. Statistical evaluation of real-time PCR knowledge. BMC Bioinformatics 7, 85 (2006).
H. J. Motulsky. GraphPad statistics information. http://www.graphpad.com/guides/prism/7/statistics/index.htm.
[ad_2]
Comments are closed.