Cocaine regulation of Nr4a1 chromatin bivalency and mRNA in female and male mice | Scientific Studies – Nature.com

[ad_1]

  • Substance Abuse and Psychological Well being Providers Administration. Key substance use and psychological well being indicators in the USA: Outcomes from the 2018 Nationwide Survey on Drug Use and Well being. HHS Publ. No. PEP19–5068, NSDUH Ser. H-54 (2018) doi:https://doi.org/10.1016/j.drugalcdep.2016.10.042.

  • Kasperski, S. J. et al. Faculty college students’ use of cocaine: Outcomes from a longitudinal research. Addict. Behav. 36, 408–411 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Becker, J. B. & Hu, M. Intercourse variations in drug abuse. Entrance. Neuroendocrinol. 29, 36–47 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Becker, J. B. & Koob, G. F. Intercourse variations in animal fashions: Concentrate on habit. Pharmacol. Rev. 68, 242–263 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zakharova, E., Wade, D. & Izenwasser, S. Sensitivity to cocaine conditioned reward relies on intercourse and age. Pharmacol. Biochem. Behav. 92, 131–134 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Russo, S. J. et al. Intercourse variations within the conditioned rewarding results of cocaine. Mind Res. 970, 214–220 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lynch, W. J. & Carroll, M. E. Intercourse variations within the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 144, 77–82 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu, M., Crombag, H. S., Robinson, T. E. & Becker, J. B. Organic foundation of intercourse variations within the propensity to self-administer cocaine. Neuropsychopharmacology 29, 81–85 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • López, A. J. et al. Cocaine self-administration induces sex-dependent protein expression within the nucleus accumbens. Commun. Biol. 4, 883 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Carroll, M. E. & Lynch, W. J. research intercourse variations in habit utilizing animal fashions. Addict. Biol. 21, 1007–1029 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walker, D. M. & Nestler, E. J. Neuroepigenetics and habit. Handb. Clin. Neurol. https://doi.org/10.1016/B978-0-444-64076-5.00048-X (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, D. M. et al. Cocaine self-administration alters transcriptome-wide responses within the mind’s reward circuitry. Biol. Psychiatry 84, 867–880 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pierce, R. C. et al. Environmental, genetic and epigenetic contributions to cocaine habit. Neuropsychopharmacology 43, 1471–1480 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Sa Nogueira, D., Merienne, Ok. & Befort, Ok. Neuroepigenetics and addictive behaviors: The place can we stand?. Neurosci. Biobehav. Rev. 106, 58–72 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Robison, A. J. & Nestler, E. J. Transcriptional and epigenetic mechanisms of habit. Nat. Rev. Neurosci. 12, 623–637 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nestler, E. J. & Lüscher, C. The molecular foundation of drug habit: Linking epigenetic to synaptic and circuit mechanisms. Neuron 102, 48–59 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walker, D. M., Cates, H. M., Heller, E. A. & Nestler, E. J. Regulation of chromatin states by medication of abuse. Curr. Opin. Neurobiol. 30, 112–121 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar, A. et al. Chromatin reworking is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Russo, S. J. & Nestler, E. J. The mind reward circuitry in temper issues. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3381 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koob, G. F. & Volkow, N. D. Neurobiology of habit: A neurocircuitry evaluation. The Lancet Psychiatry 3, 760–773 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jordi, E. et al. Differential results of cocaine on histone posttranslational modifications in recognized populations of striatal neurons. Proc. Natl. Acad. Sci. 110, 9511–9516 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, Z., Yuan, Q., Mash, D. C. & Goldman, D. Substance-specific and shared transcription and epigenetic modifications within the human hippocampus chronically uncovered to cocaine and alcohol. Proc. Natl. Acad. Sci. 108, 6626–6631 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gajewski, P. A. et al. Epigenetic regulation of hippocampal fosb expression controls behavioral responses to cocaine. J. Neurosci. 39, 8305–8314 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • De Sa Nogueira, D. et al. Hippocampal cannabinoid 1 receptors are modulated following cocaine self-administration in male rats. Mol. Neurobiol. 59, 1896–1911 (2022).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sadri-Vakili, G. et al. Cocaine-induced chromatin reworking will increase brain-derived neurotrophic issue transcription within the Rat Medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J. Neurosci. https://doi.org/10.1523/jneurosci.2328-10.2010 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. X. et al. The histone demethylase KDM6B within the medial prefrontal cortex epigenetically regulates cocaine reward reminiscence. Neuropharmacology 141, 113–125 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sadri-Vakili, G. Cocaine triggers epigenetic alterations within the corticostriatal circuit. Mind Res. 1628, 50–59 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Werner, C. T., Altshuler, R. D., Shaham, Y. & Li, X. Epigenetic mechanisms in drug relapse. Biol. Psychiatry 89, 331–338 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng, J. et al. Power cocaine-regulated epigenomic modifications in mouse nucleus accumbens. Genome Biol. 15, R65 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bernstein, B. E. et al. A bivalent chromatin construction marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Voigt, P., Tee, W.-W. & Reinberg, D. A double tackle bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumar, D., Cinghu, S., Oldfield, A. J., Yang, P. & Jothi, R. Decoding the operate of bivalent chromatin in improvement and most cancers. Genome Res. 31, 2170–2184 (2021).

    PubMed Central 
    Article 

    Google Scholar
     

  • Nasca, C. et al. Position of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to emphasize. Neuron 96, 402–413 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan, L. et al. Epigenomic panorama of human fetal mind, coronary heart, and liver. J. Biol. Chem. 291, 4386–4398 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weiner, A. et al. Co-ChIP permits genome-wide mapping of histone mark co-occurrence at single-molecule decision. Nat. Biotechnol. 34, 953–961 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carpenter, M. D. et al. Nr4a1 suppresses cocaine-induced conduct by way of epigenetic regulation of homeostatic goal genes. Nat. Commun. 11, 504 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Savell, Ok. E. et al. A dopamine-induced gene expression signature regulates neuronal operate and cocaine response. Sci. Adv. 6, eaba4221 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cirnaru, M.-D. et al. Nuclear receptor nr4a1 regulates striatal striosome improvement and dopamine D 1 receptor signaling. Eneuro 6, ENEURO.0305-19.2019 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bourhis, E. et al. The transcription elements Nur77 and retinoid X receptors take part in amphetamine-induced locomotor actions. Psychopharmacology 202, 635–648 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Volpicelli, F. et al. Bdnf gene is a downstream goal of Nurr1 transcription consider rat midbrain neurons in vitro. J. Neurochem. 102, 441–453 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kadkhodaei, B. et al. Nurr1 is required for upkeep of maturing and grownup midbrain dopamine neurons. J. Neurosci. 29, 15923–15932 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bridi, M. S., Hawk, J. D., Chatterjee, S., Protected, S. & Abel, T. Pharmacological activators of the NR4A nuclear receptors improve LTP in a CREB/CBP-dependent method. Neuropsychopharmacology 42, 1243–1253 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu, S. J. & Heller, E. A. Single pattern sequencing (S3EQ) of epigenome and transcriptome in nucleus accumbens. J. Neurosci. Strategies 308, 62–73 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peng, G.-H. & Chen, S. Double chromatin immunoprecipitation: Evaluation of goal co-occupancy of retinal transcription elements. In Strategies in Molecular Biology (eds Weber, B. H. F. & Langmann, T.) 311–328 (Humana Press, 2012). https://doi.org/10.1007/978-1-62703-080-9_22.

    Chapter 

    Google Scholar
     

  • Barth, T. Ok. & Imhof, A. Quick alerts and sluggish marks: The dynamics of histone modifications. Tendencies Biochem. Sci. 35, 618–626 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zsindely, N. & Bodai, L. Histone methylation in Huntington’s illness: Are bivalent promoters the crucial targets?. Neural Regen. Res. 13, 1191 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rodriguez, J. et al. Bivalent domains implement transcriptional reminiscence of DNA methylated genes in most cancers cells. Proc. Natl. Acad. Sci. 105, 19809–19814 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Corridor, A. W. et al. Bivalent chromatin domains in glioblastoma reveal a subtype-specific signature of glioma stem cells. Most cancers Res. 78, 2463–2474 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Curry, E. et al. Genes predisposed to DNA hypermethylation throughout acquired resistance to chemotherapy are recognized in ovarian tumors by bivalent chromatin domains at preliminary prognosis. Most cancers Res. 78, 1383–1391 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bernhart, S. H. et al. Modifications of bivalent chromatin coincide with elevated expression of developmental genes in most cancers. Sci. Rep. 6, 37393 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Belin, D. & Everitt, B. J. Cocaine searching for habits depend on dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boja, J. W. & Kuhar, M. J. [3H]cocaine binding and inhibition of [3H]dopamine uptake is analogous in each the rat striatum and nucleus accumbens. Eur. J. Pharmacol. 173, 215–217 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Veeneman, M. M. J., Damsteegt, R. & Vanderschuren, L. J. M. J. The nucleus accumbens shell and the dorsolateral striatum mediate the reinforcing results of cocaine by way of a serial connection. Behav. Pharmacol. 26, 193–199 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carpenter, M. D. et al. Cell-type particular profiling of histone post-translational modifications within the grownup mouse striatum. bioRxiv 17, 11 (2022).


    Google Scholar
     

  • Davis, M. I. & Puhl, H. L. Nr4a1-eGFP is a marker of striosome-matrix structure, improvement and exercise within the prolonged striatum. PLoS ONE 6, e16619 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lobo, M. Ok., Karsten, S. L., Grey, M., Geschwind, D. H. & Yang, X. W. FACS-array profiling of striatal projection neuron subtypes in juvenile and grownup mouse brains. Nat. Neurosci. 9, 443–452 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edwards, S., Bachtell, R. Ok., Guzman, D., Whisler, Ok. N. & Self, D. W. Emergence of context-associated GluR1 and ERK phosphorylation within the nucleus accumbens core throughout withdrawal from cocaine self-administration. Addict. Biol. 16, 450–457 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salinas, A. G., Davis, M. I., Lovinger, D. M. & Mateo, Y. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum. Neuropharmacology 108, 275–283 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Calo, E. & Wysocka, J. Modification of enhancer chromatin: What, how, and why?. Mol. Cell 49, 825–837 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pekowska, A. et al. H3K4 tri-methylation offers an epigenetic signature of energetic enhancers. EMBO J. 30, 4198–4210 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hawk, J. D. et al. NR4A nuclear receptors assist reminiscence enhancement by histone deacetylase inhibitors. J. Clin. Make investments. 122, 3593–3602 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwapis, J. L. et al. Epigenetic regulation of the circadian gene Per1 contributes to age-related modifications in hippocampal reminiscence. Nat. Commun. 9, 3323 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kang, S.-A. et al. Regulation of Nur77 protein turnover by way of acetylation and deacetylation induced by p300 and HDAC1. Biochem. Pharmacol. 80, 867–873 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Du, Y. et al. Structural mechanism of bivalent histone H3K4me3K9me3 recognition by the spindlin1/C11orf84 complicated in rRNA transcription activation. Nat. Commun. 12, 949 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cabrera Zapata, L. E. et al. X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell. Mol. Life Sci. 78, 7043–7060 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Phillips, R. A. et al. An atlas of transcriptionally outlined cell populations within the rat ventral tegmental space. Cell Rep. 39, 110616 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jaric, I., Rocks, D., Greally, J. M., Suzuki, M. & Kundakovic, M. Chromatin group within the feminine mouse mind fluctuates throughout the oestrous cycle. Nat. Commun. 10, 2851 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Arnold, A. P. et al. The significance of getting two X chromosomes. Philos. Trans. R. Soc. B. Biol. Sci. 371, 20150113 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous profiling of a number of chromatin proteins in the identical cells. Mol. Cell 81, 4736-4746.e5 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription elements in complicated tissues. Nat. Biotechnol. 39, 825–835 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Geen, H. et al. dCas9-based epigenome modifying suggests acquisition of histone methylation will not be ample for goal gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nieuwenhuis, S., Forstmann, B. U. & Wagenmakers, E.-J. Inaccurate analyses of interactions in neuroscience: An issue of significance. Nat. Neurosci. 14, 1105–1107 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Energy 3: A versatile statistical energy evaluation program for the social, behavioral, and biomedical sciences. Behav. Res. Strategies 39, 175–191 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Livak, Ok. J. & Schmittgen, T. D. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the twoΔΔCT technique. Strategies 25, 402–408 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. Statistical evaluation of real-time PCR knowledge. BMC Bioinformatics 7, 85 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • H. J. Motulsky. GraphPad statistics information. http://www.graphpad.com/guides/prism/7/statistics/index.htm.

  • [ad_2]

    Comments are closed.